Thanks for this post!
That being said, my model of Yudkowsky, which I built by spending time interpreting and reverse engineering the post you're responding to, feels like you're not addressing his points (obviously, I might have missed the real Yudkowsky's point)
My interpretation is that he is saying that Evolution (as the generator of most biological anchors) explores the solution space in a fundamentally different path than human research. So what you have is two paths through a space. The burden of proof for biological anchors thus lies in arguing that there are enough connections/correlations between the two paths to use one in order to predict the other.
Here it sounds like you're taking as an assumption that human research follows the same or a faster path towards the same point in search space. But that's actually the assumption that IMO Yudkowsky is criticizing!
In his piece, Yudkowsky is giving arguments that the human research path should lead to more efficient AGIs than evolution, in part due to the ability of humans to have and leverage insights, which the naive optimization process of evolution can't do. He also points to the inefficiency of biology in implementing new (in geological-time) complex solutions. On the other hand, he doesn't seem to see a way of linking the amount of resources needed by evolution to the amount of resources needed by human research, because they are so different.
If the two paths are very different and don't even aim at the same parts of the search space, there's nothing telling you that computing the optimization power of the first path helps in understanding the second one.
I think Yudkowsky would agree that if you could estimate the amount of resources needed to simulate all evolution until humans at the level of details that you know is enough to capture all relevant aspects, that amount of resources would be an upper bound on the time taken by human research because that's a way to get AGI if you have the resources. But the number is so vastly large (and actually unknown due to the "level of details" problem) that it's not really relevant for timelines calculations
(Also, I already had this discussion with Daniel Kokotajlo in this thread, but I really think that Platt's law is one of the least cruxy aspects of the original post. So I don't think discussing it further or pointing attention to it is a good idea)
It displeases me that this is currently the most upvoted response: I believe you are focusing on EY's weakest rather than strongest points.
My interpretation is that he is saying that Evolution (as the generator of most biological anchors) explores the solution space in a fundamentally different path than human research. So what you have is two paths through a space. The burden of proof for biological anchors thus lies in arguing that there are enough connections/correlations between the two paths to use one in order to predict the other.
It's hardly surprising there are 'two paths through a space' - if you reran either (biological or cultural/technological) evolution with slightly different initial conditions you'd get a different path. However technological evolution is aware of biological evolution and thus strongly correlated to and influenced by it. IE deep learning is in part brain reverse engineering (explicitly in the case of DeepMind, but there are many other examples). The burden proof is thus arguably more opposite of what you claim (EY claims).
In his piece, Yudkowsky is giving arguments that the human research path should lead to more efficient AGIs than evolution, in part due to the ability of humans to have and leverage insights, which the naive optimization process of evolution can't do. He also points to the inefficiency of biology in implementing new (in geological-time) complex solutions.
To the extent EY makes specific testable claims about the inefficiency of biology, those claims are in err - or at least easily contestable.
EY' strongest point is that the Bio Anchors framework puts far too much weight on scaling of existing models (ie transformers) to AGI, rather than modeling improvement in asymptotic scaling itself. GPT-3 and similar model scaling is so obviously inferior to what is probably possible today - let alone what is possible in the near future - that it should be given very little consideration/weight, just as it would be unwise to model AGI based on scaling up 2005 DL tech.
Thanks for pushing back on my interpretation.
I feel like you're using "strongest" and "weakest" to design "more concrete" and "more abstract", with maybe the value judgement (implicit in your focus on specific testable claims) that concreteness is better. My interpretation doesn't disagree with your point about Bio Anchors, it simply says that this is a concrete instantiation of a general pattern, and that the whole point of the original post as I understand it is to share this pattern. Hence the title who talks about all biology-inspired timelines, the three examples in the post, and the seven times that Yudkowsky repeats his abstract arguments in differents ways.
It's hardly surprising there are 'two paths through a space' - if you reran either (biological or cultural/technological) evolution with slightly different initial conditions you'd get a different path. However technological evolution is aware of biological evolution and thus strongly correlated to and influenced by it. IE deep learning is in part brain reverse engineering (explicitly in the case of DeepMind, but there are many other examples). The burden proof is thus arguably more opposite of what you claim (EY claims).
Maybe a better way of framing my point here is that the optimization processes are fundamentally different (something about which Yudkowsky has written a lot, see for example this post from 13 years ago), and that the burden of proof is on showing that they have enough similarity to extract a lot of info from the evolutionary optimization to the human research optimization.
I also don't think your point about DeepMind works, because DM is working in a way extremely different from evolution. They are in part reverse engineering the brain, but that's a very different (and very human and insight heavy) paths towards AGI than the one evolution took.
Lastly for this point, I don't think the interpretation that "Yudkowsky says that the burden of proof is on showing that the optimization of evolution and human research are non correlated" survives the contact with a text where Yudkowsky constantly berates his interlocutors for assuming such correlation, and keeps drawing again and again the differences.
To the extent EY makes specific testable claims about the inefficiency of biology, those claims are in err - or at least easily contestable.
Hum, I find myself feeling like this comment: Yudkowsky's main point about biology IMO is that brains are not at all the most efficient computational way of implementing AGI. Another way of phrasing it is that Yudkowsky says (according to me) that you could use significantly less hardware and ops/sec to make an AGI.
I don't think I am following the argument here. You seem focused on the comparison with evolution, which is only a minor part of Bio Anchors, and used primarily as an upper bound. (You say "the number is so vastly large (and actually unknown due to the 'level of details' problem) that it's not really relevant for timelines calculations," but actually Bio Anchors still estimates that the evolution anchor implies a ~50% chance of transformative AI this century.)
Generally, I don't see "A and B are very different" as a knockdown counterargument to "If A required ___ amount of compute, my guess is that B will require no more." I'm not sure I have more to say on this point that hasn't already been said - I acknowledge that the comparisons being made are not "tight" and that there's a lot of guesswork, and the Bio Anchors argument doesn't go through without some shared premises and intuitions, but I think the needed intuitions are reasonable and an update from Bio-Anchors-ignorant starting positions is warranted.
Thanks for the answer!
Unfortunately, I don't have the time at the moment to answer in detail and have more of a conversation, as I'm fully focused on writing a long sequence about pushing for pluralism in alignment and extracting the core problem out of all the implementation details and additional assumption. I plan on going back to analyzing timeline research in the future, and will probably give better answers then.
That being said, here are quick fire thoughts:
It's simply because we each (myself more than her) have an inclination to apply a fair amount of adjustment in a conservative direction, for generic "burden of proof" reasons, rather than go with the timelines that seem most reasonable based on the report in a vacuum.
While one can sympathize with the view that the burden of proof ought to lie with advocates of shorter timelines when it comes to the pure inference problem ("When will AGI occur?"), it's worth observing that in the decision problem ("What should we do about it?") this situation is reversed. The burden of proof in the decision problem probably ought instead to lie with advocates of non-action: when one's timelines are >1 generation, it is a bit too easy to kick the can down the road in various ways — leaving one unprepared if the future turns out to move faster than we expected. Conversely someone whose timelines are relatively short may take actions today that will leave us in a better position in the future, even if that future arrives more slowly than they believed originally.
(I don't think OpenPhil is confusing these two, just that in a conversation like this it is particularly worth emphasizing the difference.)
I agree with this. I often default to acting as though we have ~10-15 years, partly because I think leverage is especially high conditional on timelines in that rough range.
Continuing our experiments with the voting system, I've enabled two-axis voting for this thread too.
The two dimensions are:
While Matthew says "Overall I find the law to be pretty much empirically validated, at least by the standards I'd expect from a half in jest Law of Prediction," I don't agree: I don't think an actual trendline on the chart would be particularly close to the Platt's Law line. I think it would, instead, predict that Bio Anchors should point to longer timelines than 30 years out.
I ran OLS regression on the data, and this was the result. Platt's law is in blue.
I agree this trendline doesn't look great for Platt's law, and backs up your observation by predicting that Bio Anchors should be more than 30 years out.
However, OLS is notoriously sensitive to outliers. If instead of using some more robust regression algorithm, we instead super arbitrarily eliminated all predictions after 2100, then we get this, which doesn't look absolutely horrible for the law. Note that the median forecast is 25 years out.
Caveating that I did a lot of skimming on both Bio Anchors and Eliezer's response, the part of Bio Anchors that seemed weakest to me was this:
To be maximally precise, we would need to adjust this probability downward by some amount to account for the possibility that other key resources such as datasets and environments are not available by the time the computation is available
I think the existence of proper datasets/environments is a huge issue for current ML approaches, and you have to assign some nontrivial weight to it being a much bigger bottleneck than computational resources. Like, we're lucky that GPT-3 is trained with the LM objective (predict the next word) for which there is a lot of naturally-occurring training data (written text). Lucky, because that puts us in a position where there's something obvious to do with additional compute. But if we hit a limit following that approach (and I think it's plausible that the signal is too weak in otherwise-unlabeled text) then we're rather stuck. Thus, to get timelines, we'd also need to estimate what dataset/environments are necessary for training AGI. But I'm not sure we know what these datasets/environments look like. An upper bound is "the complete history of earth since life emerged", or something... not sure we know any better.
I think parts of Eliezer's response intersects with this concern, e.g. the energy use analogy. It is the same sort of question, how well do we know what the missing ingredients are? Do we know that compute doesn't occupy enough of the surface area of possible bottlenecks for a compute-based analysis to be worth much? And I'm specifically suggesting that environments/datasets occupy enough of that surface area to seriously undermine the analysis.
Does Bio Anchors deal with this concern beyond the brief mention above (and I missed it, very possible)? Or are there other arguments out there that suggest compute really is all that's missing?
I occasionally hear people make this point but it really seems wrong to me, so I'd like to hear more! Here are the reasons it seems wrong to me:
1. Data generally seems to be the sort of thing you can get more of by throwing money at. It's not universally true but it's true in most cases, and it only needs to be true for at least one transformative or dangerous task. Moreover, investment in AI is increasing; when a tech company is spending $10,000,000,000 on compute for a single AI training run, they can spend 10% as much money to hire 2,000 trained professionals and pay them $100k/yr salaries for 5 years to build training environments and collect/curate data. Not to mention, you are probably doing multiple big AI training runs and you are probably a big tech company that has already set up a huge workforce and data-gathering pipeline with loads of products and stuff.
2. Bitter lesson etc. etc. Most people who I trust on this topic seem to think compute is the main bottleneck, not data.
3. Humans don't need much data; one way we could get transformative or dangerous AI is if we get "human-level AGI," there are plausible versions of this scenario that involve creating something that needs as little or even less data than humans, and while it's possible that the only realistic way to create such a thing is via some giant evolution-like training process that itself requires lots of data... I wouldn't bet on it.
Q. Can you give an example of what progress in data/environments looks like? What progress has been made in this metric over the past 10 years? It'll help me get a sense of what you count as data/environment and what you count as "algorithms." The Bio Anchors report already tracks progress in algorithms.
Final point: I totally agree we should assign nontrivial weight to data being a huge bottleneck, one that won't be overcome by decades and billions of dollars in spending. But everyone agrees on this already; for example, Ajeya assigns 10% of her credence to "basically no amount of compute would be enough with 2020's ideas, not even 10^70 flops." How could recapitulating evolution a billion times over not be enough??? Well, two reasons: Maybe there's some special sauce architecture that can't be found by brute evolutionary search, and maybe data/training environments is an incredibly strong bottleneck. I think the line between these two is blurry. Anyhow, the point is, on my interpretation of Ajeya her framework already assigns something like 5% credence to data/environments being a strong bottleneck. If you think it should be more than that, no problem! Just go into her spreadsheet and make it 25% or whatever you think it is.
Yes, good questions, but I think there are convincing answers. Here's a shot:
1. Some kinds of data can be created this way, like parallel corpora for translation or video annotated with text. But I think it's selection bias that it seems like most cases are like this. Most of the cases we're familiar with seem like this because this is what's easy to do! But transformative tasks are hard, and creating data that really contains latent in it the general structures necessary for task performance, that is also hard. I'm not saying research can't solve it, but that if you want to estimate a timeline, you can't consign this part of the puzzle to a footnote of the form "lots of research resources will solve it". Or, if you do, you might as well relax the whole project and bring only that level of precision across the board.
2. At least in NLP (the AI subfield with which I'm most familiar), my sense of the field's zeitgeist is quite contrary to "compute is the issue". I think there's a large, maybe majority current of thought that our current benchmarks are crap, that performance on them doesn't relate to any interesting real-world task, that optimizing on them is of really unclear value, and that the field as a whole is unfortunately rudderless right now. I think this current holds true among many young DL researchers, not just the Gary Marcuses of the world. That's not a formal survey or anything, just my sense from reading NLP papers and twitter. But similarly, I think the notion that compute is the bottleneck is overrepresented in the LessWrong sphere, vs. what others think.
3. Humans not needing much data is misleading IMO because the human brain comes highly optimized out of the box at birth, and indeed that's the result of a big evolutionary process. To be clear, I agree achieving human-level AI is enough to count as transformative and may well be a second-long epoch on the way to much more powerful AI. But anyway, you have basically the same question to answer there. Namely, I'd still object that Bio Anchors doesn't address the datasets/environments issue regarding making even just human-level AI. Changing the scope to "merely" human doesn't answer the objection.
Q/A. As for recent progress: no, I think there has been very little! I'm only really familiar with NLP, so there might be more in the RL environments. (My very vague sense of RL is that it's still just "video games you can put an agent is" and basically always has been, but don't take it from me.) As for NLP, there is basically nothing new in the last 10 years. We have lots of unlabeled text for language models, we have parallel corpora for translation, and we have labeled datasets for things like question-answering (see here for a larger list of supervised tasks). I think it's really unclear whether any of these have latent in them the structures necessary for general language understanding. GPT is the biggest glimmer of hope recently, but part of the problem even there is we can't even really quantify how close it is to general language understanding. We don't have a good way of measuring this! Without it, we certainly can't train, as we can't compute a loss function. I think there are maybe some arguments that, in the limit, unlabeled text with the LM objective is enough: but that limit might really be more text than can fit on earth, and we'd need to get a handle on that for any estimates.
Final point: I'm more looking for a qualitative acknowledgement that this problem of datasets/environments is hard and unsolved (or arguments for why it isn't), is as important as compute, and, building on that, serious attention paid to an analysis of what it would take to make the right datasets/environments. Rather than consign it to an "everything else" parameter, analyze what it might take to make better datasets/environments, including trying to get a handle on whether we even know how. I think this would make for a much better analysis, and would address some of Eliezer's concerns because it would cover more of the specific, mechanistic story about the path to creating transformative AI.
(Full disclosure: I've personally done work on making better NLP benchmarks, which I guess has given me an appreciation for how hard and unsolved this problem feels. So, discount appropriately.)
Thanks, nice answers!
I agree it would be good to extend the bio anchors framework to include more explicit modelling of data requirements and the like instead of just having it be implicit in the existing variables. I'm generally a fan of making more detailed, realistic models and this seems reasonably high on the priority list of extensions to make. I'd also want to extend the model to include multiple different kinds of transformative task and dangerous task, and perhaps to include interaction effects between them (e.g. once we get R&D acceleration then everything else may come soon...) and perhaps to make willingness-to-spend not increase monotonically but rather follow a boom and bust cycle with a big boom probably preceding the final takeoff.
I still don't think the problem of datasets/environments is hard and unsolved, but I would like to learn more.
What's so bad about text prediction / entropy (GPT-3's main metric) as a metric for NLP? I've heard good things about it, e.g. this.
Re: Humans not needing much data: They are still proof of concept that you don't need much data (and/or not much special, hard-to-acquire data, just ordinary life experience, access to books and conversations with people, etc.) to be really generally intelligent. Maybe we'll figure out how to make AIs like this too. MAYBE the only way to do this is to recapitulate a costly evolutionary process that itself is really tricky to do and requires lots of data that's hard to get... but I highly doubt it. For example, we might study how the brain works and copy evolution's homework, so to speak. Or it may turn out that most of the complexity and optimization of the brain just isn't necessary. To your "Humans not needing much data is misleading IMO because the human brain comes highly optimized out of the box at birth, and indeed that's the result of a big evolutionary process" I reply with this post.
I still don't think we have good reason to think ALL transformative tasks or dangerous tasks will require data that's hard to get. You say this stuff is hard, but all we know is that it's too hard for the amount of effort that's been expended so far. For all we know it's not actually that much harder than that.
If there hasn't been much progress in the last ten years on the data problem, then... do you also expect there to be not much progress in the next ten years either? And do you thus have, like, 50-year timelines?
Re: humans/brains, I think what humans are a proof of concept of is that, if you start with an infant brain, and expose it to an ordinary life experience (a la training / fine-tuning), then you can get general intelligence. But I think this just doesn't bear on the topic of Bio Anchors, because Bio Anchors doesn't presume we have a brain, it presumes we have transformers. And transformers don't know what to do with a lifetime of experience, at least nowhere near as well as an infant brain does. I agree we might learn more about AI from examining humans! But that's leaving the Bio Anchors framing of "we just need compute" and getting into the framing of algorithmic improvements etc. I don't disagree broadly that some approaches to AI might not have as big a (pre-)training phase the way current models do, if, for instance, they figure out a way to "start with" infant brains. But I don't see the connection to the Bio Anchors framing.
What's so bad about perplexity? I'm not saying perplexity is bad per se, just that it's unclear how much data you need, with perplexity as your objective, to achieve general-purpose language facility. It's unclear both because the connection between perplexity and extrinsic linguistic tasks is unclear, and because we don't have great ways of measuring extrinsic linguistic tasks. For instance, the essay you cite itself cites two very small experiments showing correlation between perplexity and extrinsic tasks. One of them is a regression on 8 data points, the other has 24 data points. So I just wouldn't put too much stake in extrapolations there. Furthermore, and this isn't against perplexity, but I'd be skeptical of the other variable i.e. the linguistic task perplexity is regressed against: in both cases, a vague human judgement of whether model output is "human-like". I think there's not much reason to think that is correlated to some general-purpose language facility. Attempts like this to (roughly speaking) operationalize the Turing test have generally been disappointing; getting humans to say "sure, that sounds human" seems to leave a lot to be desired; I think most researchers find them to be disappointingly game-able, vague a critique though that may be. The google Meena paper acknowledges this, and reading between the lines I get the sense they don't think too much of their extrinsic, human-evaluation metric either. E.g., the best they say is, "[inter-annotator] agreement is reasonable considering the questions are subjective and the final results are always aggregated labels".
This is sort of my point in a nutshell: we have put very little effort into telling whether the datasets we have contain adequate signal to learn the functions we want to learn, in part because we aren't even sure how to evaluate those functions. It's not surprising that perplexity correlates with extrinsic tasks to a degree. For instance, it's pretty clear that, to get state-of-the-art low perplexity on existing corpora, transformers can learn the latent rules of grammar, and, naturally doing so correlates with better human judgements of model output. So, grammar is latent in the corpora. But is physics latent in the corpora? It would improve a model's perplexity at least a bit to learn physics: some of these corpora contain physics textbooks with answers to exercises way at the back of the books, so to predict the answers at the back you would have to be able to learn how to do the exercises. But it's unclear whether current corpora contain enough signal to do that. Would we even know how to tell if the model was or wasn't learning physics? I'm personally skeptical that it's happening at all, but I admit that's just based in my subjective assessment of GPT-3 output... again, part of the problem of not having a good way to judge performance outside of perplexity.
As for why all transformative tasks might have hard-to-get-data... well this is certainly speculative, but people sometimes talk about AI-complete tasks, analogizing to the concept of completeness for complexity classes in complexity theory (e.g., NP-complete). I think that's the relevant idea here. The goal being general intelligence, I think it's plausible that most (all? I don't know) transformative tasks are reducible to each other. And I think you also get a hint of this in NLP tasks, where they are weirdly reducible to each other, given the amazing flexibility of language. Like, for a dumb example, the task of question answering entails the task of translation, because you can ask, "How do you say [passage] in French?" So I think the sheer number of tasks, as initially categorized by humans, can be misleading. Tasks aren't as independent as they may appear. Anyway, that's far from a tight argument, but hopefully it provides some intuition.
Honestly I haven't thought about how to incorporate the dataset bottleneck into a timeline. But, I suppose, I could wind up with even longer timelines if I think that we haven't made progress because we don't have the faintest idea how and the lack of progress isn't for lack of trying. Missing fundamental ideas, etc. How do you forecast when a line of zero slope eventually turns up? If I really think we have shown ourselves to be stumped (not sure), I guess I'd have to fall back on general-purpose tools for forecasting big breakthroughs, and that's the sort of vague modeling that Bio Anchors seems to be trying to avoid.
BioAnchors is poorly named, the part you are critiquing should be called GPT-3_Anchors.
A better actual BioAnchor would be based on trying to model/predict how key params like data efficiency and energy efficiency are improving over time, and when they will match/surpass the brain.
GPT-3 could also obviously be improved for example by multi-modal training, active learning, curriculum learning, etc. It's not like it even represents the best of what's possible for a serious AGI attempt today.
Fwiw, I think nostalgebraist's recent post hit on some of the same things I was trying to get at, especially around not having adequate testing to know how smart the systems are getting -- see the section on what he calls (non-)ecological evaluation.
With apologies for the belated response: I think greghb makes a lot of good points here, and I agree with him on most of the specific disagreements with Daniel. In particular:
Overall, I think that datasets/environments are plausible as a major blocker to transformative AI, and I think Bio Anchors would be a lot stronger if it had more to say about this.
I am sympathetic to Bio Anchors's bottom-line quantitative estimates despite this, though (and to be clear, I held all of these positions at the time Bio Anchors was drafted). It's not easy for me to explain all of where I'm coming from, but a few intuitions:
Hopefully that gives a sense of where I'm coming from. Overall, I think this is one of the most compelling objections to Bio Anchors; I find it stronger than the points Eliezer focuses on above (unless you are pretty determined to steel-man any argument along the lines of "Brains and AIs are different" into a specific argument about the most important difference.)
With these two points in mind, it seems off to me to confidently expect a new paradigm to be dominant by 2040 (even conditional on AGI being developed), as the second quote above implies. As for the first quote, I think the implication there is less clear, but I read it as expecting AGI to involve software well over 100x as efficient as the human brain, and I wouldn’t bet on that either (in real life, if AGI is developed in the coming decades—not based on what’s possible in principle.)
I think this misses the point a bit. The thing to be afraid of is not an all-new approach to replace neural networks, but rather new neural network architectures and training methods that are much more efficient than today's. It's not unreasonable to expect those, and not unreasonable to expect that they'll be much more efficient than humans, given how easy it is to beat humans at arithmetic for example, and given fast recent progress to superhuman performance in many other domains.
Unless I’m mistaken, the Bio Anchors framework explicitly assumes that we will continue to get algorithmic improvements, and even tries to estimate and extrapolate the trend in algorithmic efficiency. It could of course be that progress in reality will turn out a lot faster than the median trendline in the model, but I think that’s reflected by the explicit uncertainty over the parameters in the model.
In other words, Holden’s point about this framework being a testbed for thinking about timelines remains unscathed if there is merely more ordinary algorithmic progress than expected.
Curated. A few weeks ago I curated the post this is a response to. I'm excited to see a response that argues the criticized report was misinterpreted/misrepresented. I'd be even more excited to see a response to the response–by the authors involved so far or anyone else. Someone once said (approx) that successful conversation must permit four levels: saying X, critiquing X, critiquing the critique, and critiquing the critique of the critique. We're at 3 out of 4.
if you think timelines are short for reasons unrelated to biological anchors, I don't think Bio Anchors provides an affirmative argument that you should change your mind.
Eliezer: I wish I could say that it probably beats showing a single estimate, in terms of its impact on the reader. But in fact, writing a huge careful Very Serious Report like that and snowing the reader under with Alternative Calculations is probably going to cause them to give more authority to the whole thing. It's all very well to note the Ways I Could Be Wrong and to confess one's Uncertainty, but you did not actually reach the conclusion, "And that's enough uncertainty and potential error that we should throw out this whole deal and start over," and that's the conclusion you needed to reach.
I would be curious to know what the intended consequences of the forecasting piece were.
A lot of Eliezer's argument seems to me to be pushing at something like 'there is a threshold for how much evidence you need before you start putting down numbers, and you haven't reached it', and I take what I've quoted from your piece to be supporting something like 'there is a threshold for how much evidence you might have, and if you're above it (and believe this forecast to be an overestimate) then you may be free to ignore the numbers here', contra the Humbali position. I'm not particularly confident on that, though.
Where this leaves me is feeling like you two have different beliefs about who will (or should) update on reading this kind of thing, and to what end, which is probably tangled up in beliefs about how good people are at holding uncertainty in their mind. But I'm not really sure what these beliefs are.
The Bio Anchors report is intended as a tool for making debates about AI timelines more concrete, for those who find some bio-anchor-related bound helpful (e.g., some think we should lower bound P(AGI) at some reasonably high number for any year in which we expect to hit a particular kind of "biological anchor"). Ajeya's work lengthened my own timelines, because it helped me understand that some bio-anchor-inspired arguments for shorter timelines didn't have as much going for them as I'd thought; but I think it may have shortened some other folks'.
(The presentation of the report in the Most Important Century series had a different aim. That series is aimed at making the case that we could be in the most important century, to a skeptic.)
I don't personally believe I have a high-enough-quality estimate using another framework that I'd be justified in ignoring bio-anchors-based reasoning, but I don't think it's wild to think someone else might have such an estimate.
The "biological anchors" method for forecasting transformative AI is the biggest non-trust-based input into my thinking about likely timelines for transformative AI. While I'm sympathetic to parts of Eliezer Yudkowsky's recent post on it, I overall disagree with the post, and think it's easy to get a misimpression of the "biological anchors" report (which I'll abbreviate as "Bio Anchors") - and Open Philanthropy's take on it - by reading it.
This post has three sections:
A few notes before I continue:
Bounding vs. pinpointing
Here are a number of quotes from Eliezer in which I think he gives the impression that Biological Anchors assumes transformative AI will be arrived at via modern machine learning methods:
However, the argument given in Bio Anchors does not hinge on an assumption that modern deep learning is what will be used, nor does it set aside the possibility of paradigm changes.
From the section What if TAI is developed through a different path?:
That is, Ajeya (the author) sees the "median" estimate as structurally likely to be overly conservative (a soft upper bound) for reasons including those Eliezer gives, but is also adjusting in the opposite direction to account for factors including the generic burden of proof. (More discussion of "soft bounds" provided by Bio Anchors in this section and this section of the report.)
I made similar arguments in a recent piece, “Biological anchors” is about bounding, not pinpointing, AI timelines. This is my best explanation for skeptics of why I find the framework valuable.
As far as I can tell, the only part of Eliezer's piece that addresses an argument along the lines of the "soft bounding" idea is:
I don't literally think that the "exact GPT architecture" would work to produce transformative AI, but I think something not too far off would be a strong contender - such that having enough compute to afford this extremely brute-force method, combined with decades more time to produce new innovations and environments, does provide something of a "soft upper bound" on transformative AI timelines.
Another way of putting this is that a slightly modified version of what Eliezer calls "tentative [and] probably false]" seems to me to be "tentative and probably true." There's room for disagreement about this, but this is not where most of Eliezer's piece focused.
While I can't be confident, I also suspect that the person in the 2006 or thereabouts part of Eliezer's piece may have intended to argue for something more like a "(soft) upper bound" than a median estimate.
Finally, I want to point out this quote from Bio Anchors, which reinforces that it is intended as a tool for informing AI timelines rather than as a comprehensive generator of all-things-considered AI timelines:
It seems that Eliezer places higher probability on an "entirely different path" sooner than Bio Anchors, but he does not seem to argue for this (and see below for why I don't think it would be a great bet). Instead, he largely argues that the possibility is ignored by Bio Anchors, which is not the case.
Platt's Law and past forecasts
Eliezer writes:
I have a couple issues here.
First, I think Eliezer exaggerates the precision of Platt's Law and its match to the Bio Anchors projection:
I think a softer "It's suspicious that Bio Anchors is in the same 'reasonable-sounding' general range ('a few decades') that AI forecasts have been in for a long time" comment would've been more reasonable than what Eliezer wrote, so from here I'll address that. First, I want to comment on Moravec specifically.
Eliezer characterizes Open Philanthropy as though we think that Hans Moravec's projection was foreseeably silly and overaggressive (see quote above), but now think we have the right approach. This isn't the case.
To expand on what I mean by a reasonable standard and reasonable alternatives:
Returning to the softened version of Platt's Law: according to my current views on timelines (and more so according to Eliezer's), "a few decades" has been a good range for a prediction to be in for the last few decades (again, keeping in mind what context and alternatives I am using). I think this considerably softens the force of an objection like: "You're forecasting a few decades, as many others have over the last few decades; this in itself undermines your case."
None of the above points constitute arguments for the correctness of Bio Anchors. My point is that "Your prediction is like these other predictions" (the thrust of much of Eliezer's piece) doesn't seem to undermine the argument, partly because the other predictions look broadly good according to both my and Eliezer's current views.
A few other reactions to specific parts
On one hand, I think it's a distinct possibility that we're going to see dramatically new approaches to AI development by the time transformative AI is developed.
On the other, I think quotes like this overstate the likelihood in the short-to-medium term.
If the world were such that:
...Then I would be interested in a Bio Anchors-style analysis of projected power usage. As noted above, I would be interested in this as a tool for analysis rather than as "the way to get my probability distribution." That's also how I'm interested in Bio Anchors (and how it presents itself).
I also think we have some a priori reason to believe that human scientists can "use computations" somewhere near as efficiently as the brain does (software), more than we have reason to believe that human scientists can "use power" somewhere nearly as efficiently as the brain does (hardware).
(As a side note, there is some analysis of how nature vs. humans use power in this section of Bio Anchors.)
It's hard for me to understand how it is not a relevant fact: I think we have good reason to believe that humans can use computations at least as intelligently as evolution did.
I think it's perfectly reasonable to push back on 10^43 as a median estimate, but not as a number that has some sort of relevance.
I thought this was a pretty misleading presentation of how Open Philanthropy has communicated about this work. It's true that Open Philanthropy's public communication tends toward a cautious, serious tone (and I think there are good reasons for this); but beyond that, I don't think we do much to convey the sort of attitude implied above. The report's publication announcement was on LessWrong as a draft report for comment, and the report is still in the form of several Google docs. We never did any sort of push to have it treated as a fancy report.