afaict, a big fraction of evolution's instructions for humans (which made sense in the ancestral environment) are encoded as what you pay attention to. Babies fixate on faces, not because they have a practical need to track faces at 1 week old, but because having a detailed model of other humans will be valuable later. Young children being curious about animals is a human universal. Etc.
This is true but I don't think is super important for this argument. Evolution definitely encodes inductive biases into learning about relevant things which ML archit...
I always say that the whole brain (including not only the basal ganglia but also the thalamocortical system, medulla, etc.) operates as a model-based RL system. You’re saying that the BG by itself operates as a model-free RL system. So I don’t think we’re disagreeing, because “the cortex is the model”?? (Well, we definitely have some disagreements about the BG, but we don’t have to get into them, I don’t think they’re very important for present purposes.)
I think there is some disagreement here, at least in the way I am using model-based / model-free ...
1. Evolution needed to encode not only drives for food or shelter, but also drives for evolutionary desirable states like reproduction; this likely leads to drives which are present and quite active, such as "seek social status" => as a consequence I don't think the evolutionary older drives are out of play and the landscape is flat as you assume, and dominated by language-model-based values
Yes, I think drives like this are important on two levels. At the first level, we are experience them as primary rewards -- i.e. as social status gives direct ...
My understanding is that after a lot of simplifications, policy gradients just takes a noisy gradient step in the direction of minimising Bellman error, and so in the limit of infinite data/computation/visiting all states in the world, it is 'guaranteed' to converge to an optimal policy for the MDP. Q learning and other model-free algorithms have similar guarantees. In practice, with function approximation, and PPOs regularisation bits, these guarantees do not hold anymore, but the fundamental RL they are built off of does have them. The place to go deeper into this is Sutton and Bart's textbook and also Bertsekas' dynamic programming textbook
I broadly agree with a lot of shard theory claims. However, the important thing to realise is that 'human values' do not really come from inner misalignment wrt our innate reward circuitry but rather are the result of a very long process of social construction influenced both by our innate drives but also by the game-theoretic social considerations needed to create and maintain large social groups, and that these value constructs have been distilled into webs of linguistic associations learnt through unsupervised text-prediction-like objectives which is ho...
I feel like this is a good point in general but I think there is an important but subtle distinction between the two examples. In the first case of the GAN it is that there is the distinction between the inner optimization loop of the ML algorithm and the outer loop of humans performing an evolutionary search process to get papers/make pretty pictures.
In the wire-heading case this feels different in that you have essentially two separate value functions -- a cortical LM based one which can extrapolate values in linguistic/concept space and a cl...
While I agree with a lot of points of this post, I want to quibble with the RL not maximising reward point. I agree that model-free RL algorithms like DPO do not directly maximise reward but instead 'maximise reward' in the same way self-supervised models 'minimise crossentropy' -- that is to say, the model is not explicitly reasoning about minimising cross entropy but learns distilled heuristics that end up resulting in policies/predictions with a good reward/crossentropy. However, it is also possible to produce architectures that do directly optimise for... (read more)