Thanks for the very comprehensive review on generalisation!
As a historical note / broader context, the worry about model class over-expressivity has been there in the early days of Machine Learning. There was a mistrust of large blackbox models like random forest and SVM and their unusually low test or even cross-validation loss, citing ability of the models to fit noise. Breiman frank commentary back in 2001, "Statistical Modelling: The Two Cultures", touch on this among other worries about ML models. The success of ML has turn this worry into the general... (read more)
Yeah it surprises me that Zhang et al. (2018) has had the impact it did when, like you point out, the ideas have been around for so long. Deep learning theorists like Telgarsky point to it as a clear turning point.
This I can stand behind.
Thanks for the very comprehensive review on generalisation!
As a historical note / broader context, the worry about model class over-expressivity has been there in the early days of Machine Learning. There was a mistrust of large blackbox models like random forest and SVM and their unusually low test or even cross-validation loss, citing ability of the models to fit noise. Breiman frank commentary back in 2001, "Statistical Modelling: The Two Cultures", touch on this among other worries about ML models. The success of ML has turn this worry into the general... (read more)