All of greghb's Comments + Replies

Fwiw, I think nostalgebraist's recent post hit on some of the same things I was trying to get at, especially around not having adequate testing to know how smart the systems are getting -- see the section on what he calls (non-)ecological evaluation.

1HoldenKarnofsky
With apologies for the belated response: I think greghb makes a lot of good points here, and I agree with him on most of the specific disagreements with Daniel. In particular: * I agree that "Bio Anchors doesn't presume we have a brain, it presumes we have transformers. And transformers don't know what to do with a lifetime of experience, at least nowhere near as well as an infant brain does." My guess is that we should not expect human-like sample efficiency from a simple randomly initialized network; instead, we should expect to extensively train a network to the point where it can do this human-like learning. (That said, this is far from obvious, and some AI scientists take the opposite point of view.) * I'm not super sympathetic to Daniel's implied position that there are lots of possible transformative tasks and we "only need one" of them. I think there's something to this (in particular, we don't need to replicate everything humans can do), but I think once we start claiming that there are 5+ independent tasks such that automating them would be transformative, we have to ask ourselves why transformative events are as historically rare as they are. (More at my discussion of persuasion on another thread.) Overall, I think that datasets/environments are plausible as a major blocker to transformative AI, and I think Bio Anchors would be a lot stronger if it had more to say about this.  I am sympathetic to Bio Anchors's bottom-line quantitative estimates despite this, though (and to be clear, I held all of these positions at the time Bio Anchors was drafted). It's not easy for me to explain all of where I'm coming from, but a few intuitions: * We're still in a regime where compute is an important bottleneck to AI development, and funding and interest are going up. If we get into a regime where compute is plentiful and data/environments are the big blocker, I expect efforts to become heavily focused there. * Several decades is just a very long time. (This re

Re: humans/brains, I think what humans are a proof of concept of is that, if you start with an infant brain, and expose it to an ordinary life experience (a la training / fine-tuning), then you can get general intelligence. But I think this just doesn't bear on the topic of Bio Anchors, because Bio Anchors doesn't presume we have a brain, it presumes we have transformers. And transformers don't know what to do with a lifetime of experience, at least nowhere near as well as an infant brain does. I agree we might learn more about AI from examining humans! Bu... (read more)

1jacob_cannell
BioAnchors is poorly named, the part you are critiquing should be called GPT-3_Anchors. A better actual BioAnchor would be based on trying to model/predict how key params like data efficiency and energy efficiency are improving over time, and when they will match/surpass the brain. GPT-3 could also obviously be improved for example by multi-modal training, active learning, curriculum learning, etc. It's not like it even represents the best of what's possible for a serious AGI attempt today.

Yes, good questions, but I think there are convincing answers. Here's a shot:

1. Some kinds of data can be created this way, like parallel corpora for translation or video annotated with text. But I think it's selection bias that it seems like most cases are like this. Most of the cases we're familiar with seem like this because this is what's easy to do! But transformative tasks are hard, and creating data that really contains latent in it the general structures necessary for task performance, that is also hard. I'm not saying research can't solve it, but ... (read more)

4Daniel Kokotajlo
Thanks, nice answers! I agree it would be good to extend the bio anchors framework to include more explicit modelling of data requirements and the like instead of just having it be implicit in the existing variables. I'm generally a fan of making more detailed, realistic models and this seems reasonably high on the priority list of extensions to make. I'd also want to extend the model to include multiple different kinds of transformative task and dangerous task, and perhaps to include interaction effects between them (e.g. once we get R&D acceleration then everything else may come soon...) and perhaps to make willingness-to-spend not increase monotonically but rather follow a boom and bust cycle with a big boom probably preceding the final takeoff. I still don't think the problem of datasets/environments is hard and unsolved, but I would like to learn more. What's so bad about text prediction / entropy (GPT-3's main metric) as a metric for NLP? I've heard good things about it, e.g. this. Re: Humans not needing much data: They are still proof of concept that you don't need much data (and/or not much special, hard-to-acquire data, just ordinary life experience, access to books and conversations with people, etc.) to be really generally intelligent. Maybe we'll figure out how to make AIs like this too. MAYBE the only way to do this is to recapitulate a costly evolutionary process that itself is really tricky to do and requires lots of data that's hard to get... but I highly doubt it. For example, we might study how the brain works and copy evolution's homework, so to speak. Or it may turn out that most of the complexity and optimization of the brain just isn't necessary. To your "Humans not needing much data is misleading IMO because the human brain comes highly optimized out of the box at birth, and indeed that's the result of a big evolutionary process" I reply with this post. I still don't think we have good reason to think ALL transformative tasks or dangerous

Caveating that I did a lot of skimming on both Bio Anchors and Eliezer's response, the part of Bio Anchors that seemed weakest to me was this:

To be maximally precise, we would need to adjust this probability downward by some amount to account for the possibility that other key resources such as datasets and environments are not available by the time the computation is available

I think the existence of proper datasets/environments is a huge issue for current ML approaches, and you have to assign some nontrivial weight to it being a much bigger bottleneck th... (read more)

I occasionally hear people make this point but it really seems wrong to me, so I'd like to hear more! Here are the reasons it seems wrong to me:

1. Data generally seems to be the sort of thing you can get more of by throwing money at. It's not universally true but it's true in most cases, and it only needs to be true for at least one transformative or dangerous task. Moreover, investment in AI is increasing; when a tech company is spending $10,000,000,000 on compute for a single AI training run, they can spend 10% as much money to hire 2,000 trained profess... (read more)