All of Joe Carlsmith's Comments + Replies

Cross-posting my take from twitter with a few edits:

My current take on this paper is that they aren’t emphasizing the most interesting results, which are the sandbagging results in section 3.6 and appendix A.6.

In more particular: the paper frames its results centrally as about the *capability* to scheme given prompting towards a specific goal, rather than the *propensity* to scheme given the model’s default motivations. But the sandbagging results show Claude Sonnet-3.5 doing notably worse (16%) on a multiplication task/evaluation when the documentation sa

... (read more)

The extent of the manipulation and sandbagging, in what is ostensibly a GPT-4 derivative, and not GPT-5, is definitely concerning. But it also makes me wonder about the connection to 'scaling has failed' rumors lately, where the frontier LLMs somehow don't seem to be working out. One of the striking parts is that it sounds like all the pretraining people are optimistic, while the pessimism seems to come from executives or product people, complaining about it not working as well for eg. coding as they want it to.

I've wondered if we are seeing a post-trainin... (read more)

Brief comments (shared in private with Joe earlier):
1. We agree. We also found the sandbagging with no CoT results the most concerning in expectation.
2. They are still early results, and we didn't have a lot of time to investigate them, so we didn't want to make them the headline result. Due to the natural deadline of the o1 release, we couldn't do a proper investigation.
3. The main goal of the paper was to investigate scheming inability arguments for scheming safety cases. Therefore, shifting focus to propensity-based finding would have watered down the main purpose IMO. 

We will potentially further look into these findings in 2025. 

"Your 2021 report on power-seeking does not appear to discuss the cost-benefit analysis that a misaligned AI would conduct when considering takeover, or the likelihood that this cost-benefit analysis might not favor takeover."

I don't think this is quite right. For example: Section 4.3.3 of the report, "Controlling circumstances" focuses on the possibility of ensuring that an AI's environmental constraints are such that the cost-benefit calculus does not favor problematic power-seeking. Quoting:


So far in section 4.3, I’ve been talking about controlling “int

... (read more)

The point of that part of my comment was that insofar as part of Nora/Quintin's response to simplicity argument is to say that we have active evidence that SGD's inductive biases disfavor schemers, this seems worth just arguing for directly, since even if e.g. counting arguments were enough to get you worried about schemers from a position of ignorance about SGD's inductive biases, active counter-evidence absent such ignorance could easily make schemers seem quite unlikely overall.

There's a separate question of whether e.g. counting arguments like mine abo... (read more)

The probability I give for scheming in the report is specifically for (goal-directed) models that are trained on diverse, long-horizon tasks (see also Cotra on "human feedback on diverse tasks," which is the sort of training she's focused on). I agree that various of the arguments for scheming could in principle apply to pure pre-training as well, and that folks (like myself) who are more worried about scheming in other contexts (e.g., RL on diverse, long-horizon tasks) have to explain what makes those contexts different. But I think there are various plau... (read more)

Thanks for writing this -- I’m very excited about people pushing back on/digging deeper re: counting argumentssimplicity arguments, and the other arguments re: scheming I discuss in the report. Indeed, despite the general emphasis I place on empirical work as the most promising source of evidence re: scheming, I also think that there’s a ton more to do to clarify and maybe debunk the more theoretical arguments people offer re: scheming – and I think playing out the dialectic further in this respect might well lead to comparatively fast pro... (read more)

2Alex Turner
The vast majority of evidential labor is done in order to consider a hypothesis at all. 
3Alex Turner
Seems to me that a lot of (but not all) scheming speculation is just about sufficiently large pretrained predictive models, period. I think it's worth treating these cases separately. My strong objections are basically to the "and then goal optimization is a good way to minimize loss in general!" steps.

(Partly re-hashing my response from twitter.)

I'm seeing your main argument here as a version of what I call, in section 4.4, a "speed argument against schemers" -- e.g., basically, that SGD will punish the extra reasoning that schemers need to perform. 

(I’m generally happy to talk about this reasoning as a complexity penalty, and/or about the params it requires, and/or about circuit-depth -- what matters is the overall "preference" that SGD ends up with. And thinking of this consideration as a different kind of counting argument *against* schemers see... (read more)

I agree that AIs only optimizing for good human ratings on the episode (what I call "reward-on-the-episode seekers") have incentives to seize control of the reward process, that this is indeed dangerous, and that in some cases it will incentivize AIs to fake alignment in an effort to seize control of the reward process on the episode (I discuss this in the section on "non-schemers with schemer-like traits"). However, I also think that reward-on-the-episode seekers are also substantially less scary than schemers in my sense, for reasons I discuss here (i.e.... (read more)

Agree that it would need to have some conception of the type of training signal to optimize for, that it will do better in training the more accurate its picture of the training signal, and that this provides an incentive to self-locate more accurately (though not necessary to degree at stake in e.g. knowing what server you're running on).

The question of how strongly training pressures models to minimize loss is one that I isolate and discuss explicitly in the report, in section 1.5, "On 'slack' in training" -- and at various points the report references how differing levels of "slack" might affect the arguments it considers. Here I was influenced in part by discussions with various people, yourself included, who seemed to disagree about how much weight to put on arguments in the vein of: "policy A would get lower loss than policy B, so we should think it more likely that SGD selects policy... (read more)

Agents that end up intrinsically motivated to get reward on the episode would be "terminal training-gamers/reward-on-the-episode seekers," and not schemers, on my taxonomy. I agree that terminal training-gamers can also be motivated to seek power in problematic ways (I discuss this in the section on "non-schemers with schemer-like traits"), but I think that schemers proper are quite a bit scarier than reward-on-the-episode seekers, for reasons I describe here.

I found this post a very clear and useful summary -- thanks for writing. 

Rohin is correct. In general, I meant for the report's analysis to apply to basically all of these situations (e.g., both inner and outer-misaligned, both multi-polar and unipolar, both fast take-off and slow take-off), provided that the misaligned AI systems in question ultimately end up power-seeking, and that this power-seeking leads to existential catastrophe. 

It's true, though, that some of my discussion was specifically meant to address the idea that absent a brain-in-a-box-like scenario, we're fine. Hence the interest in e.g. deployment decisions, warning shots, and corrective mechanisms.

Mostly personal interest on my part (I was working on a blog post on the topic, now up), though I do think that the topic has broader relevance.

Hi Koen, 

Glad to hear you liked section 4.3.3. And thanks for pointing to these posts -- I certainly haven't reviewed all the literature, here, so there may well be reasons for optimism that aren't sufficiently salient to me.

Re: black boxes, I do think that black-box systems that emerge from some kind of evolution/search process are more dangerous; but as I discuss in 4.4.1, I also think that the bare fact that the systems are much more cognitively sophisticated than humans creates significant and safety-relevant barriers to understanding, even if the... (read more)

1Koen Holtman
For AI specific work, the work by Alex Turner mentioned elsewhere in this comment section comes to mind, as backing up a much larger body of reasoning-by-analogy work, like Omohundro (2008). But the main thing I had in mind when making that comment, frankly, was the extensive literature on kings and empires. In broader biology, many genomes/organisms (bacteria, plants, etc) will also tend to expand to consume all available resources, if you put them in an environment where they can, e.g. without balancing predators.

Hi Daniel, 

Thanks for taking the time to clarify. 

One other factor for me, beyond those you quote, is the “absolute” difficulty of ensuring practical PS-alignment, e.g. (from my discussion of premise 3):

Part of this uncertainty has to do with the “absolute” difficulty of achieving practical PS-alignment, granted that you can build APS systems at all. A system’s practical PS-alignment depends on the specific interaction between a number of variables -- notably, its capabilities (which could themselves be controlled/limited in various ways), its ob

... (read more)

Hi Daniel, 

Thanks for reading. I think estimating p(doom) by different dates (and in different take-off scenarios) can be a helpful consistency check, but I disagree with your particular “sanity check” here -- and in particular, premise (2). That is, I don’t think that conditional on APS-systems becoming possible/financially feasible by 2035, it’s clear that we should have at least 50% on doom (perhaps some of disagreement here is about what it takes for the problem to be "real," and to get "solved"?). Nor do I see 10% on “Conditional it being both po... (read more)

0Daniel Kokotajlo
Thanks for the thoughtful reply. Here are my answers to your questions: Here is what you say in support of your probability judgment of 10% on "Conditional it being both possible and strongly incentivized to build APS systems, APS systems will end up disempowering approximately all of humanity." As I read it, your analysis is something like: Probably these systems won't be actively trying to deceive us. Even if they are, we'll probably notice it and stop it since we'll be on the lookout for it. Systems that may not be aligned probably won't be deployed, because people will be afraid of dangers, thanks to warning shots. Even if they are deployed, the damage will probably be limited, since probably even unaligned systems won't be willing and able to completely disempower humanity. My response is: This just does not seem plausible conditional on it all happening by 2035. I think I'll concede that the issue of whether they'll be trying to deceive us is independent of whether timelines are short or long. However, in short-timelines scenarios there will be fewer (I would argue zero) warning shots, and less time for AI risk to be taken seriously by all the prestigious people. Moreover, takeoff is likely to be fast, with less time for policymakers and whatnot to react and less time for overseers to study and analyze their AIs. I think I'll also concede that timelines is not correlated with willingness to disempower humanity, but it's correlated with ability, due to takeoff speed considerations -- if timelines are short, then when we get crazy AI we'll be able to get crazier AI quickly by scaling up a bit more, and also separately it probably takes less time to "cross the human range." Moreover, if timelines are short then we should expect prestigious people, institutions, etc. to be as collectively incompetent as they are today--consider how COVID was handled and is still being handled. Even if we get warning shots, I don't expect the reactions to them to help much, inst

Aren't they now defined in terms of each other? 

"Intent alignment: An agent is intent aligned if its behavioral objective is outer aligned.

Outer alignment: An objective function  is outer aligned if all models that perform optimally on  in the limit of perfect training and infinite data are intent aligned."

2Evan Hubinger
Good point—and I think that the reference to intent alignment is an important part of outer alignment, so I don't want to change that definition. I further tweaked the intent alignment definition a bit to just reference optimal policies rather than outer alignment.

Thanks for writing this up. Quick question re: "Intent alignment: An agent is intent aligned if its behavioral objective is aligned with humans." What does it mean for an objective to be aligned with humans, on your view? You define what it is for an agent to be aligned with humans, e.g.: "An agent is aligned (with humans) if it doesn't take actions that we would judge to be bad/problematic/dangerous/catastrophic." But you don't say explicitly what it is for an objective to be aligned: I'm curious if you have a preferred formulation.

Is it something like: “... (read more)

2Evan Hubinger
Maybe the best thing to use here is just the same definition as I gave for outer alignment—I'll change it to reference that instead.