It's possible I'm using motivated reasoning, but on the listed ambiguous questions in section C.3, the answers the honest model gives tend to seem right to me. As in, if I were forced to answer yes or no to those questions, I would give the same answer as the honest model the majority of the time.
So if, as is stated in section 5.5, the lie detector not only detects whether the model had lied but whether it would lie in the future, and if the various model variants have a similar intuition to me, then the honest model is giving its best guess of the correct...
My guess is that a substantial amount of the verification (perhaps the majority?) was automated by training the model on domains where we have ground truth reward signals, like code, math, and standardized test questions. This would match the observed results in the o1 blog post showing that performance improved by a lot in domains that have ground truth or something close to ground truth, while performance was stagnant on things... (read more)