Thank you for your post abramdemski!
I failed to understand why you can't arrive at a solution for the Single-Shot game via Iterated Play without memory of the previous game. In order to clarify my ideas let me define two concepts first:
Iterated Play with memory: We repeatedly play the game knowing the results of the previous games.
Iterated Play without memory: We repeatedly play the game, while having no memory of the previous play.
The distinction is important: With memory we can at any time search all previous games and act accordingly, allowing for ...
Would this be a concrete example of the above:
We have two states S=0, S=1 as inputs, channel k1 given by the identity matrix, i.e. it gives us all information about the original, and k2 which loses all information about the initial states (i.e. it always returns S=1 as the output, regardless of the input ). Then k1 strictly dominates k2, however if we preprocess the inputs by mapping them both to S=1, then both channels convey no information, and as such there is no strict domination anymore. Is this so?
More generally, any k1>k2 can lose the strict domination property by a pregarbling where all information is destroyed, rendering both channels useless.
Have I missed anything?