Let be with generalised Cantor space topology, and be with product topology, a closed disc in a finite-dimensional Euclidean space. Then there is a continuous surjection . I don't know how to show that there is a topological space with carrier set and a continuous surjection . Thanks to Alex Mennen for pointing out the problem.
I have just now submitted an attempted solution to this problem to "Geometry and Topology". I claim that the space you are looking for is ( being the least uncountable cardinal) with the ``generalised Cantor space topology", that is for each countable well-ordered bit-string you have a basic open set consisting of all bit-strings of length with as an initial fragment. Since this topological space has quite a large cardinality I'm somewhat unclear whether this is helpful for your proposed application and ...
However, because topology on A′ is finer than topology on A′′ here, this still shows how the proof of the Lawvere fixed point theorem can be applied here to give Brouwer fixed point theorem as corollary, which could conceivably be a publishable result (see what "Geometry and Topology" think about that), and this could still be sorta kinda maybe relevant to Scott's original motivation for looking at the problem (if you're okay with working with two different topologies on the space of agents, one finer than the other... (read more)