There's a crux here somewhere related to the idea that, with high probability, AI will be powerful enough and integrated into the world in such a way that it will be inevitable or desirable for normal human institutions to eventually lose control and for some small regime to take over the world. I don't think this is very likely for reasons discussed in the post, and it's also easy to use this kind of view to justify some pretty harmful types of actions.
Thx!
I disagree that people working on the technical alignment problem generally believe that solving that technical problem is sufficient to get to Safe & Beneficial AGI.
I won't put words in people's mouth, but it's not my goal to talk about words. I think that large portions of the AI safety community act this way. This includes most people working on scalable alignment, interp, and deception.
...If we don’t solve the technical alignment problem, then we’ll eventually wind up with a recipe for summoning more and more powerful demons with callo
I think that large portions of the AI safety community act this way. This includes most people working on scalable alignment, interp, and deception.
Hmm. Sounds like “AI safety community” is a pretty different group of people from your perspective than from mine. Like, I would say that if there’s some belief that is rejected by Eliezer Yudkowsky and by Paul Christiano and by Holden Karnofsky and, widely rejected by employees of OpenPhil and 80,000 hours and ARC and UK-AISI, and widely rejected by self-described rationalists and by self-described EAs and by ...
Yea, thanks, good point. On one hand, I am assuming that the after identifying the SAE neurons of interest, they could be used for steering (this is related to section 5.3.2 of the paper). On the other hand, I am also assuming that in this case, identifying the problem is 80% of the challenge. IRL, I would assume that this kind of problem could and would be addressed by adversarial fine-tuning the model some more.
Thanks for the comment. My probabilities sum to 165%, which would translate to me saying that I would expect, on average, the next paper to do 1.65 things from the list, which to me doesn't seem too crazy. I think that this DOES match my expectations.
But I also think you make a good point. If the next paper comes out, does only one thing, and does it really well, I commit to not complaining too much.
Some relevant papers to anyone spelunking around this post years later:
https://arxiv.org/abs/2403.05030
https://arxiv.org/abs/2407.15549
Thanks, I think that these points are helpful and basically fair. Here is one thought, but I don't have any disagreements.
Olah et al. 100% do a good job of noting what remains to be accomplished and that there is a lot more to do. But when people in the public or government get the misconception that mechanistic interpretability has been (or definitely will be) solved, we have to ask where this misconception came from. And I expect that claims like "Sparse autoencoders produce interpretable features for large models" contribute to this.
Thanks for the comment. I think the experiments you mention are good (why I think the paper met 3), but I don't think that its competitiveness has been demonstrated (why I think the paper did not meet 6 or 10). I think there are two problems.
First, is that it's under a streetlight. Ideally, there would be an experiment that began with a predetermined set of edits (e.g., one from Meng et al., 2022) and then used SAEs to perform them.
Second, there's no baseline that SAE edits are compared to. There are lots of techniques from the editing, finetun...
Thanks for the useful post. There are a lot of things to like about this. Here are a few questions/comments.
First, I appreciate the transparency around this point.
we advocate for what we see as the ‘minimal viable policy’ for creating a good AI ecosystem, and we will be open to feedback.
Second, I have a small question. Why the use of the word "testing" instead of "auditing"? In my experience, most of the conversations lately about this kind of thing revolve around the term "auditing."
Third, I wanted to note that this post does not talk about ac...
Thanks. I agree that the points apply to individual researchers. But I don't think that it applies in a comparably worrisome way because individual researchers do not have comparable intelligence, money, and power compared to the labs. This is me stressing the "when put under great optimization pressure" of Goodhart's Law. Subtle misalignments are much less dangerous when there is a weak optimization force behind the proxy than when there is a strong one.
See also this much older and closely related post by Thomas Woodside: Is EA an advanced, planning, strategically-aware power-seeking misaligned mesa-optimizer?
I have been thinking a lot lately about evals and what differences black- vs. white-box access makes for evaluators. I was confused about the appendix on black-box evals. My best attempt to make sense of it hinges on two instances of the authors intending something different than what was written.
First, the appendix hinges somewhat on this point.
...For now, we think the easiest way to build control techniques that avoid making incorrect assumptions about scheming models is to make conservative assumptions about their internals, by rejecting any st
Thanks!
I intuit that what you mentioned as a feature might also be a bug. I think that practical forgetting/unlearning that might make us safer would probably involve subjects of expertise like biotech. And if so, then we would want benchmarks that measure a method's ability to forget/unlearn just the things key to that domain and nothing else. For example, if a method succeeds in unlearning biotech but makes the target LM also unlearn math and physics, then we should be concerned about that, and we probably want benchmarks to help us quantify that.
I could...
Several people seem to be coming to similar conclusions recently (e.g., this recent post).
I'll add that I have as well and wrote a sequence about it :)
Thanks -- I agree that this seems like an approach worth doing. I think that at CHAI and/or Redwood there is a little bit of work at least related to this, but don't quote me on that. In general, it seems like if you have a model and then a smaller distilled/otherwise-compressed version of it, there is a lot you can do with them from an alignment perspective. I am not sure how much work has been done in the anomaly detection literature that involves distillation/compression.
We talked about this over DMs, but I'll post a quick reply for the rest of the world. Thanks for the comment.
A lot of how this is interpreted depends on what the exact definition of superposition that one uses and whether it applies to entire networks or single layers. But a key thing I want to highlight is that if a layer represents a certain set amount of information about an example, then they layer must have more information per neuron if it's thin than if it's wide. And that is the point I think that the Huang paper helps to make. The fact that ...
Thanks for the comment.
In general I think that having a deep understanding of small-scale mechanisms can pay off in many different and hard-to-predict ways.
This seems completely plausible to me. But I think that it's a little hand-wavy. In general, I perceive the interpretability agendas that don't involve applied work to be this way. Also, few people would argue that basic insights, to the extent that they are truly explanatory, can be valuable. But I think it is at least very non-obvious that it would be differentiably useful for safety.
...there are a
In general, I think not. The agent could only make this actively happen to the extent that their internal activation were known to them and able to be actively manipulated by them. This is not impossible, but gradient hacking is a significant challenge. In most learning formalisms such as ERM or solving MDPs, the model's internals are not modeled as a part of the actual algorithm. They're just implementational substrate.
One idea that comes to mind is to see if a chatbot who is vulnerable to DAN-type prompts could be made to be robust to them by self-distillation on non-DAN-type prompts.
I'd also really like to see if self-distillation or similar could be used to more effectively scrub away undetectable trojans. https://arxiv.org/abs/2204.06974
I agree with this take. In general, I would like to see self-distillation, distillation in general, or other network compression techniques be studied more thoroughly for de-agentifying, de-backdooring, and robistifying networks. I think this would work pretty well and probably be pretty tractable to make ground on.
I buy this value -- FV can augment examplars. And I have never heard anyone ever say that FV is just better than examplars. Instead, I have heard the point that FV should be used alongside exemplars. I think these two things make a good case for their value. But I still believe that more rigorous task-based evaluation and less intuition would have made for a much stronger approach than what happened.
I do not worry a lot about this. It would be a problem. But some methods are model-agnostic and would transfer fine. Some other methods have close analogs for other architectures. For example, ROME is specific to transformers, but causal tracing and rank one editing are more general principles that are not.
Thanks for the comment. I appreciate how thorough and clear it is.
Knowing "what deception looks like" - the analogue of knowing the target class of a trojan in a classifier - is a problem.
Agreed. This totally might be the most important part of combatting deceptive alignment. I think of this as somewhat separate from what diagnostic approaches like MI are equipped to do. Knowing what deception looks like seems more of an outer alignment problem. While knowing what will make the model even badly even if it seems to be aligned is more of an inner...
Thanks. See also EIS VIII.
Could you give an example of a case of deception that is quite unlike a trojan? Maybe we have different definitions. Maybe I'm not accounting for something. Either way, it seems useful to figure out the disagreement.
The MNIST CNN was trained only on the 50k training examples.
I did not guarantee that the models had perfect train accuracy. I don't believe they did.
I think that any interpretability tools are allowed. Saliency maps are fine. But to 'win,' a submission needs to come with a mechanistic explanation and sufficient evidence for it. It is possible to beat this challenge by using non mechanistic techniques to figure out the labeling function and then using that knowledge to find mechanisms by which the networks classify the data.
At the end of the day, I (and possibly Neel) will have the final say in things.
Thanks :)
I think that my personal thoughts on capabilities externalities are reflected well in this post.
I'd also note that this concern isn't very unique to interpretability work but applies to alignment work in general. And in comparison to other alignment techniques, I think that the downside risks of interpretability tools are most likely lower than those of stuff like RLHF. Most theories of change for interpretability helping with AI safety involve engineering work at some point in time, so I would expect that most interpretability researchers have simil...
This is an interesting point. But I'm not convinced, at least immediately, that this isn't likely to be largely a matter of AI governance.
There is a long list of governance strategies that aren't specific to AI that can help us handle perpetual risk. But there is also a long list of strategies that are. I think that all of the things I mentioned under strategy 2 have AI specific examples:
...establishing regulatory agencies, auditing companies, auditing models, creating painful bureaucracy around building risky AI systems, influencing hardware supply cha
I see your point here about generally strengthening methods versus specifically refining them for an application. I think this is a useful distinction. But I'm all about putting a good amount of emphasis on connections between this work and different applications. I feel like at this point, we have probably cruxed.
Thanks!
We do hope that these are just special cases and that our methods will resolve a broader set of problems.
I hope so too. And I would expect this to be the case for good solutions.
Whether they are based on mechanistic interpretability, probing, other interpretability tools, adversaries, relaxed adversaries, or red-teaming, I would expect methods that are good at detecting goal misgeneralization or deceptive alignment to also be useful for self-driving cars and other issues. At the end of the day, any misaligned model will have a bug -- some set ...
Nice post. I'll nitpick one thing.
In the paper, the approach was based on training a linear probe to differentiate between true and untrue question answer pairs. I believe I mentioned to you at one point that "contrastive" seems more precise than "unsupervised" to describe this method. To carry out an approach like this, it's not enough to have or create a bunch of data. One needs the ability to reliably find subsets of the data that contrast. In general, this would be as hard as labeling. But when using boolean questions paired with "yes" and "no" a...
Hi Paul, thanks. Nice reading this reply. I like your points here.
Some of what I say here might reveal a lack of keeping up well with ARC. But as someone who works primarily on interpretability, the thought of mechanistic anomaly detection techniques that are not useful for use in today's vision or language models seems surprising to me. Is there anything you can point me to to help me understand why an interpretability/anomaly detection tool that's useful for ASI or something might not be useful for cars?
I’m glad you think that the post has a small audience and may not be needed. I suppose that’s a good sign.
—
In the post I said it’s good that nukes don’t blow up on accident and similarly, it’s good that BSL-4 protocols and tech exist. I’m not saying that alignment solutions shouldn’t exist. I am speaking to a specific audience (e.g. the frontier companies and allies) that their focus on alignment isn’t commensurate with its usefulness. Also don’t forget the dual nature of alignment progress. I also mentioned in the post that frontier alignment progress hastens timelines and makes misuse risk more acute.