For me, the balance of considerations is that pause in scaling up LLMs will probably lead to more algorithmic progress
I'd consider this to be one of the more convincing reasons to be hesitant about a pause (as opposed to the 'crying wolf' argument, which seems to me like a dangerous way to think about coordinating on AI safety?).
I don't have a good model for how much serious effort is currently going into algorithmic progress, so I can't say anything confidently there - but I would guess there's plenty and it's just not talked about?
It might be...
I had a potential disagreement with your claim that a pause is probably counterproductive if there's a paradigm change required to reach AGI: even if the algorithms of the current paradigm aren't directly a part of the algorithm behind existentially dangerous AGI, advances in these algorithms will massively speed up research and progress towards this goal.
...My take is: a “pause” in training unprecedentedly large ML models is probably good if TAI will look like (A-B), maybe good if TAI will look like (C), and probably counterproductive if TAI w
Maybe - I can see it being spun in two ways:
To point (1): alignment researchers aren't terrified of GPT-4 taking over the world, wouldn't agree to this characterization, and are no... (read more)