From chapter The state of AI today:
The most likely and proximal blocker is power consumption (data-centers training modern AIs use enormous amounts of electricity, up to the equivalent of the yearly consumption of 1000 average US households) and ...
Clusters like xAI's Memphis datacenter with 100K H100s consume about 150 megawatts. An average US household consumes 10,800 kilowatt-hours a year, which is 1.23 kilowatts on average. So the consumption of a 100K H100s clusters is equivalent to that of 121,000 average US households, not 1,000 average US households. If we take a cluster of 16K H100s that trained Llama-3-405B, that's still 24 megawatts and equivalent to 19,000 average US households.
So you likely mean the amount of energy (as opposed to power) consumed in training a model ("yearly consumption of 1000 average US households"). The fraction of all energy consumed by a cluster of H100s is about 1500 watts per GPU, and that GPU at 40% compute utilization produces 0.4e15 FLOP/s of useful dense BF16 compute. Thus about 3.75e-12 joules is expended per FLOP that goes into training a model. For 4e25 FLOPs of Llama-3-405B, that's 1.5e14 joules, or 41e6 kilowatt-hours, which is consumed by 3,800 average US households in a year[1].
This interpretation fits the numbers better, but it's a bit confusing, since the model is trained for much less than a year, while the clusters will go on consuming their energy all year long. And the power constraints that are a plausible proximal blocker of scaling are about power, not energy.
If we instead take 2e25 FLOPs attributed to original GPT-4, and 700 watts of a single H100, while ignoring the surrounding machinery of a datacenter (even though you are talking about what a datacenter consumes in this quote, so this is an incorrect way of estimating energy consumption), and train on H100s (instead of A100s used for original GPT-4), then this gives 9.7e6 kilowatt-hours, or the yearly consumption of 900 average US households. With A100s, we instead have 400 watts and 0.3e15 FLOP/s (becoming 0.12e15 FLOP/s at 40% utilization), which gets us 18.5e6 kilowatt-hours for a 2e25 FLOPs model, or yearly consumption of 1,700 average US households (again, ignoring the rest of the datacenter, which is not the correct thing to do). ↩︎
From footnote 2 to The state of AI today:
GPT-2 cost an estimated $43,000 to train in 2019; today it is possible to train a 124M parameter GPT-2 for $20 in 90 minutes.
Isn't $43,000 the estimate for the 1.5B replication of GPT-2 rather than for the 124M? If so, this phrasing is somewhat misleading. We only need $250 even for the 1.5B version, but still.
From chapter The state of AI today:
Later this year, the first 100,000 GPU cluster will go online
It's not the first, there's xAI cluster from September, and likely a Microsoft cluster from May.
Even the cited The Information article says about the Meta cluster in question that
The previously unreported cluster, which could be fully completed by October or November, comes as two other companies have touted their own.
We (Connor Leahy, Gabriel Alfour, Chris Scammell, Andrea Miotti, Adam Shimi) have just published The Compendium, which brings together in a single place the most important arguments that drive our models of the AGI race, and what we need to do to avoid catastrophe.
We felt that something like this has been missing from the AI conversation. Most of these points have been shared before, but a “comprehensive worldview” doc has been missing. We’ve tried our best to fill this gap, and welcome feedback and debate about the arguments. The Compendium is a living document, and we’ll keep updating it as we learn more and change our minds.
We would appreciate your feedback, whether or not you agree with us:
Here is the twitter thread and the summary: