Thanks for writing this! I'd be very excited to see more critiques of our approach and it's been great reading the comments so far! Thanks to everyone who took the time to write down their thoughts! :)
I've also written up a more detailed post on why I'm optimistic about our approach. I don't expect this to be persuasive to most people here, but it should give a little bit more context and additional surface area to critique what we're doing.
My own responses to OpenAI's plan:
These are obviously not intended to be a comprehensive catalogue of the problems with OpenAI's plan, but I think they cover the most egregious issues.
I think OpenAI's approach to "use AI to aid AI alignment" is pretty bad, but not for the broader reason you give here.
I think of most of the value from that strategy as downweighting probability for some bad properties - in the conditioning LLMs to accelerate alignment approach, we have to deal with preserving myopia under RL, deceptive simulacra, human feedback fucking up our prior, etc, but there's less probability of adversarial dynamics from the simulator because of myopia, there are potentially easier channels to elicit the model's ontology, we can trivially get some amount of acceleration even in worst-case scenarios, etc.
I don't think of these as solutions to alignment as much as reducing the space of problems to worry about. I disagree with OpenAI's approach because it views these as solutions in themselves, instead of as simplified problems.
I'm happy to see OpenAI and OpenAI Alignment Team get recognition/credit for having a plan and making it public. Well deserved I'd say. (ETA: To be clear, like the OP I don't currently expect the plan to work as stated; I expect us to need to pivot eventually & hope a better plan comes along before then!)
What's MIRI's current plan? I can't actually remember, though I do know you've pivoted away from your strategy for Agent Foundations. But that wasn't the only agenda you were working on, right?
The genre of plans that I'd recommend to groups currently pushing the capabilities frontier is: aim for a pivotal act that's selected for being (to the best of your knowledge) the easiest-to-align action that suffices to end the acute risk period. Per Eliezer on Arbital, the "easiest-to-align" condition probably means that you want the act that requires minimal cognitive abilities, out of the set of acts that suffice to prevent the world from being destroyed:
In the context of AI alignment, the "Principle of Minimality" or "Principle of Least Everything" says that when we are building the first sufficiently advanced Artificial Intelligence, we are operating in an extremely dangerous context in which building a marginally more powerful AI is marginally more dangerous. The first AGI ever built should therefore execute the least dangerous plan for preventing immediately following AGIs from destroying the world six months later. Furthermore, the least dangerous plan is not the plan that seems to contain the fewest material actions that seem risky in a conventional sense, but rather the plan that requires the least dangerous cognition from the AGI executing it. Similarly, inside the AGI itself, if a class of thought seems dangerous but necessary to execute sometimes, we want to execute the fewest possible instances of that class of thought.
E.g., if we think it's a dangerous kind of event for the AGI to ask "How can I achieve this end using strategies from across every possible domain?" then we might want a design where most routine operations only search for strategies within a particular domain, and events where the AI searches across all known domains are rarer and visible to the programmers. Processing a goal that can recruit subgoals across every domain would be a dangerous event, albeit a necessary one, and therefore we want to do less of it within the AI (and require positive permission for all such cases and then require operators to validate the results before proceeding).
Ideas that inherit from this principle include the general notion of Task-directed AGI, taskishness, and mild optimization.
Having a plan for alignment, deployment, etc. of AGI is (on my model) crucial for orgs that are trying to build AGI.
MIRI itself isn't pushing the AI capabilities frontier, but we are trying to do whatever seems likeliest to make the long-term future go well, and our guess is that the best way to do this is "make progress on figuring out AI alignment". So I can separately answer the question "what's MIRI's organizational plan for solving alignment?"
My answer to that question is: we don't currently have one. Nate and Eliezer are currently doing a lot of sharing of their models, while keeping an eye out for hopeful-seeming ideas.
None of the research directions we're aware of currently meet our "significant amount of hope" bar, but several things meet the "tiny scrap of hope" bar, so we're continuing to keep an eye out and support others' work, while not going all-in on any one approach.
Various researchers at MIRI are pursuing research pathways as they see fit, though (as mentioned) none currently seem promising enough to MIRI's research leadership to make us want to put lots of eggs in those baskets or narrowly focus the org's attention on those directions. We just think they're worth funding at all, given how important alignment is and how little of an idea the world has about how to make progress; and MIRI is as good a place as any to host this work.
Scott Garrabrant and Abram Demski wrote the Embedded Agency sequence as their own take on the "Agent Foundations" problems, and they and other MIRI researchers have continued to do work over the years on problems related to EA / AF, though MIRI as a whole diversified away from the Agent Foundations agenda years ago. (AFAIK Scott sees "Embedded Agency" less as a discrete agenda, and more as a cluster of related problems/confusions that bear various relations to different parts of the alignment problem.)
(Caveat: I had input from some other MIRI staff in writing the above, but I'm speaking from my own models above, not trying to perfectly capture the view of anyone else at MIRI.)
The genre of plans that I'd recommend to groups currently pushing the capabilities frontier is: aim for a pivotal act that's selected for being (to the best of your knowledge) the easiest-to-align action that suffices to end the acute risk period.
FYI, I think there's a huge difference between "I think humanity needs to aim for a pivotal act" and "I recommend to groups pushing the capabilities frontier forward to aim for pivotal act". I think pivotal acts require massive amounts of good judgement to do right, and, like, I think capabilities researchers have generally demonstrated pretty bad judgment by, um, being capabilities researchers.
My ~2-hour reaction to the challenge:[1]
(I) I have a general point of confusion regarding the post: To the extent that this is an officially endorsed plan, who endorses the plan?
Reason for confusion / observations: If someone told me they are in charge of an organization that plans to build AGI, and this is their plan, I would immediately object that the arguments ignore the part where progress on their "alignment plan" make a significant contribution to capabilities research. Thereforey, in the worlds where the proposed strategy fails, they are making things actively worse, not better. Therefore, their plan is perhaps not unarguably harmful, but certainly irresponsible.[2] For this reason, I find it unlikely that the post is endorsed as a strategy by OpenAI's leadership.
(III)[3] My assumption: To make sense of the text, I will from now assume that the post is endorsed by OpenAI's alignment team only, and that the team is in a position where they cannot affect the actions of OpenAI's capabilities team in any way. (Perhaps except to the extent that their proposals would only incur a near-negligible alignment tax.) They are simply determined to make the best use of the research that would happen anyway. (I don't have any inside knowledge into OpenAI. This assumption seems plausible to me, and very sad.)
(IV) A general comment that I would otherwise need to repeat essentially ever point I make is the following: OpenAI should set up a system that will (1) let them notice if their assumptions turn out to be mistaken and (2) force them to course-correct if it happens. In several places, the post explicitly states, or at least implies, critical assumptions about the nature of AI, AI alignment, or other topics. However, it does not include any ways of noticing if these assumptions turn out to not hold. To act responsibly, OpenAI should (at the minimum): (A) Make these assumptions explicit. (B) Make these hypotheses falsifiable by publicizing predictions, or other criteria they could use to check the assumptions. (C) Set up a system for actually checking (B), and course-correcting if the assumptions turn out false.
Assumptions implied by OpenAI's plans, with my reactions:
General complaint: The plan is not a plan at all! It's just a meta-plan.
Eliezer adds: "For this reason, please note explicitly if you're saying things that you heard from a MIRI person at a gathering, or the like."
As far as I know, I came up with points (I), (III), and (XII) myself and I don't remember reading those points before. On the other hand, (IV), (IX), and (XI) are (afaik) pretty much direct ripoffs of MIRI arguments. The status of the remaining 7 points is unclear. (I read most of MIRI's publicly available content, and attended some MIRI-affiliated events pre-covid. And I think all of my alignment thinking is heavily MIRI-inspired. So the remaining points are probably inspired by something I read. Perhaps I would be able to derive 2-3 out of 7 if MIRI disappeared 6 years ago?)
(II) For example, consider the following claim: "We believe the best way to learn as much as possible about how to make AI-assisted evaluation work in practice is to build AI assistants." My reaction: Yes, technically speaking this is true. But likewise --- please excuse the jarring analogy --- the best way to learn as much as possible about how to treat radiation exposure is to drop a nuclear bomb somewhere and then study the affected population. And yeees, if people are going to be dropping nuclear bombs, you might as well study the results. But wouldn't it be even better if you personally didn't plan to drop bombs on people? Maybe you could even try coordinating with other bomb-posessing people on not dropping them on people :-).
Apologies for the inconsistent numbering. I had to give footnote [2] number (II) to get to the nice round total of 13 points :-).
(iii) because if this was true, then we could presumably just solve alignment without the help of AI assistants.
Either I misunderstand this or it seems incorrect.
It could be the case that the current state of the world doesn’t put us on track to solve Alignment in time, but using AI assistants to increase the rate of Alignment : Capabilities work by some amount is sufficient.
The use of AI assistants for alignment : capabilities doesn't have to track with the current rate of Alignment : Capabilities work. For instance, if the AI labs with the biggest lead are safety conscious, I expect the ratio of alignment : capabilities research they produce to be much higher (compared to now) right before AGI. See here.
> (iii) because if this was true, then we could presumably just solve alignment without the help of AI assistants.
Either I misunderstand this or it seems incorrect.
Hm, I think you are right --- as written, the claim is false. I think some version of (X) --- the assumption around your ability to differentially use AI assistants for alignment --- will still be relevant; it will just need a bit more careful phrasing. Let me know if this makes sense:
To get a more realistic assumption, perhaps we could want to talk about (speedup) "how much are AI assistants able to speed up alignment vs capability" and (proliferation prevention) "how much can OpenAI prevent them from proliferating to capabilities research".[1] And then the corresponding more realistic version of the claims would be that:
Comments:
This implicitly assumes that if OpenAI develops the AI assistants technology and restrict proliferation, you will get similar adoption in capabilities vs alignment. This seems realistic.
Makes sense. FWIW, based on Jan's comments I think the main/only thing the OpenAI alignment team is aiming for here is i, differentially speeding up alignment research. It doesn't seem like Jan believes in this plan; personally I don't believe in this plan.
4. We want to focus on aspects of research work that are differentially helpful to alignment. However, most of our day-to-day work looks like pretty normal ML work, so it might be that we'll see limited alignment research acceleration before ML research automation happens.
I don't know how to link to the specific comment, but here somewhere. Also:
We can focus on tasks differentially useful to alignment research
Your pessimism about iii still seems a bit off to me. I agree that if you were coordinating well between all the actors than yeah you could just hold off on AI assistants. But the actual decision the OpenAI alignment team is facing could be more like "use LLMs to help with alignment research or get left behind when ML research gets automated". If facing such choices I might produce a plan like theirs, but notably I would be much more pessimistic about it. When the universe limits you to one option, you shouldn't expect it to be particularly good. The option "everybody agrees to not build AI assistants and we can do alignment research first" is maybe not on the table, or at least it probably doesn't feel like it is to the alignment team at OpenAI.
Oh, I think I agree - if the choice is to use AI assistants or not, then use them. If they need adapting to be useful for alignment, then do adapt them.
But suppose they only work kind-of-poorly - and using them for alignment requires making progress on them (which will also be useful for capabilities), and you will not be able to keep those results internal. And that you can either do this work or do literally nothing. (Which is unrealistic.) Then I would say doing literally nothing is better. (Though it certainly feels bad, and probably costs you your job. So I guess some third option would be preferable.)
(And to be clear: I also strongly endorse writing up the alignment plan. Big thanks and kudus for that! The critical comments shouldn't be viewed as negative judgement on the people involved :-).)
I have a response here.
https://www.lesswrong.com/posts/3oNZA9wTrFJRH6Sau/my-thoughts-on-openai-s-alignment-plan
On training AI systems using human feedback: This is way better than nothing, and it's great that OpenAI is doing it, but has the following issues:
On training models to assist in human evaluation and point out flaws in AI outputs: Doing this is probably somewhat better than not doing it, but I'm pretty skeptical that it provides much value:
On using AI systems, in particular large language models, to advance alignment research: This is not going to work.
(Note: This post is a write-up by Rob of a point Eliezer wanted to broadcast. Nate helped with the editing, and endorses the post’s main points.)
Eliezer Yudkowsky and Nate Soares (my co-workers) want to broadcast strong support for OpenAI’s recent decision to release a blog post ("Our approach to alignment research") that states their current plan as an organization.
Although Eliezer and Nate disagree with OpenAI's proposed approach — a variant of "use relatively unaligned AI to align AI" — they view it as very important that OpenAI has a plan and has said what it is.
We want to challenge Anthropic and DeepMind, the other major AGI organizations with a stated concern for existential risk, to do the same: come up with a plan (possibly a branching one, if there are crucial uncertainties you expect to resolve later), write it up in some form, and publicly announce that plan (with sensitive parts fuzzed out) as the organization's current alignment plan.
Currently, Eliezer’s impression is that neither Anthropic nor DeepMind has a secret plan that's better than OpenAI's, nor a secret plan that's worse than OpenAI's. His impression is that they don't have a plan at all.[1]
Having a plan is critically important for an AGI project, not because anyone should expect everything to play out as planned, but because plans force the project to concretely state their crucial assumptions in one place. This provides an opportunity to notice and address inconsistencies, and to notice updates to the plan (and fully propagate those updates to downstream beliefs, strategies, and policies) as new information comes in.
It's also healthy for the field to be able to debate plans and think about the big picture, and for orgs to be in some sense "competing" to have the most sane and reasonable plan.
We acknowledge that there are reasons organizations might want to be abstract about some steps in their plans — e.g., to avoid immunizing people to good-but-weird ideas, in a public document where it’s hard to fully explain and justify a chain of reasoning; or to avoid sharing capabilities insights, if parts of your plan depend on your inside-view model of how AGI works.
We’d be happy to see plans that fuzz out some details, but are still much more concrete than (e.g.) “figure out how to build AGI and expect this to go well because we'll be particularly conscientious about safety once we have an AGI in front of us".
Eliezer also hereby gives a challenge to the reader: Eliezer and Nate are thinking about writing up their thoughts at some point about OpenAI's plan of using AI to aid AI alignment. We want you to write up your own unanchored thoughts on the OpenAI plan first, focusing on the most important and decision-relevant factors, with the intent of rendering our posting on this topic superfluous.
Our hope is that challenges like this will test how superfluous we are, and also move the world toward a state where we’re more superfluous / there’s more redundancy in the field when it comes to generating ideas and critiques that would be lethal for the world to never notice.[2][3]
We didn't run a draft of this post by DM or Anthropic (or OpenAI), so this information may be mistaken or out-of-date. My hope is that we’re completely wrong!
Nate’s personal guess is that the situation at DM and Anthropic may be less “yep, we have no plan yet”, and more “various individuals have different plans or pieces-of-plans, but the organization itself hasn’t agreed on a plan and there’s a lot of disagreement about what the best approach is”.
In which case Nate expects it to be very useful to pick a plan now (possibly with some conditional paths in it), and make it a priority to hash out and document core strategic disagreements now rather than later.
Nate adds: “This is a chance to show that you totally would have seen the issues yourselves, and thereby deprive MIRI folk of the annoying ‘y'all'd be dead if not for MIRI folk constantly pointing out additional flaws in your plans’ card!”
Eliezer adds: "For this reason, please note explicitly if you're saying things that you heard from a MIRI person at a gathering, or the like."