That's a much more useful answer, actually. So let's bring it back to Eliezer's original question:
Can you tl;dr how you go from "humans cannot tell which alignment arguments are good or bad" to "we justifiably trust the AI to report honest good alignment takes"? Like, not with a very large diagram full of complicated parts such that it's hard to spot where you've messed up. Just whatever simple principle you think lets you bypass GIGO.
[...]
Broadly speaking, the standard ML paradigm lets you bootstrap somewhat from "I can verify whether this problem was solved" to "I can train a generator to solve this problem".
So to summarize your short, simple answer to Eliezer's question: you want to "train AI agents that are [somewhat] smarter than ourselves with ground truth reward signals from synthetically generated tasks created from internet data + a bit of fine-tuning with scalable oversight at the end". And then you hope/expect/(??have arguments or evidence??) that this allows us to (?justifiably?) trust the AI to report honest good alignment takes sufficient to put shortly-posthuman AIs inside the basin of attraction of a good eventual outcome, despite (as Eliezer puts it) humans being unable to tell which alignment takes are good or bad.
Or, to compact the summary even further: you want to train the somewhat-smarter-than-human AI on easily-verifiable synthetically-generated tasks, and then hope/expect that its good performance on those tasks generalizes to a problem which is not easily verifiable or synthetically generated, namely the problem of checking that a next generation of AI is in the basin of attraction of a good-to-humans outcome.
(Note: I know you've avoided talking about the basin of attraction of a good-to-humans outcome, instead focused on just some short-term goal like e.g. not being killed by the very next generation of AI. Not focusing on the basin of attraction is a mistake, and we can go into why it's a mistake if that turns out to be cruxy.)
In Eliezer's comment, he was imagining a training setup somewhat different from easily-verifiable synthetically-generated tasks:
Assume that whenever OpenPhil tries to run an essay contest for saying what they're getting wrong, their panel of judges ends up awarding the prize to somebody reassuringly saying that AI risk is an even smaller deal than OpenPhil thinks. How does OpenPhil bootstrap from that pattern of thumbs-up/thumbs-down to an AI that actually has better-than-OpenPhil alignment takes?
... but the analogue of the problem Eliezer was highlighting, in the context of training on easily-verifiable synthetically-generated tasks, is the question: how and why would we justifiably trust that an AI trained on easily-verifiable synthetic tasks generalizes to not-easily-verifiable real-world tasks?
The 3 month Eliezer sim might spin up many copies of other 3 month Eliezer sims, which together produce outputs that a 6-month Eliezer sim might produce.
This seems very blatantly not viable-in-general, in both theory and practice.
On the theory side: there are plenty of computations which cannot be significantly accelerated via parallelism with less-than-exponential resources. (If we do have exponential resources, then all binary circuits can be reduced to depth 2, but in the real world we do not and will not have exponential resources.) Serial computation requirements are, in fact, a thing. So you can't just have a bunch of Eliezers do in 3 months what a single 6 month Eliezer could do, in general.
Even if you allow the 3-month Eliezer sims to act one-after-another, rather than trying to get everything done in 3 months simulated time via pure parallelism, there's still a tight communication bottleneck between each Eliezer sim. There are presumably plenty of circuits which cannot be implemented with tight information bottlenecks every n serial steps.
... of course you could circumvent all that theory by e.g. just having each Eliezer emulate a single logic gate, or some comparably trivial thing, but at that point you run afoul of the non-compositionality of safety properties: putting together a bunch of "safe" things (or "interpretable" things, or "aligned" things, or "corrigible" things, ...) does not in-general produce a safe thing.
So that's the theory side. What about the practice side?
Well, Ought did that roughly that experiment years ago and it did not work at all. And that should not be surprising - as the link argues, we have extremely ample evidence from day-to-day life that such things do not work in general.
I think that's basically right, and good job explaining it clearly and compactly.
I would also highlight that it's not just about adversaries. One the main powers of proof-given-assumptions is that it allows to rule out large classes of unknown unknowns in one go. And, insofar as the things-proven-given-assumptions turn out to be false, it allows to detect previously-unknown unknowns.
I think control research has relatively little impact on X-risk in general, and wrote up the case against here.
Basic argument: scheming of early transformative AGI is not a very large chunk of doom probability. The real problem is getting early AGI to actually solve the problems of aligning superintelligences, before building those superintelligences. That's a problem for which verification is hard, solving the problem itself seems pretty hard too, so it's a particularly difficult type of problem to outsource to AI - and a particularly easy to type of problem to trick oneself into thinking the AI has solved, when it hasn't.
A few problems with this frame.
First: you're making reasonably-pessimistic assumptions about the AI, but very optimistic assumptions about the humans/organization. Sure, someone could look for the problem by using AIs to do research on other subject that we already know a lot about. But that's a very expensive and complicated project - a whole field, and all the subtle hints about it, need to be removed from the training data, and then a whole new model trained! I doubt that a major lab is going to seriously take steps much cheaper and easier than that, let alone something that complicated.
One could reasonably respond "well, at least we've factored apart the hard technical bottleneck from the part which can be solved by smart human users or good org structure". Which is reasonable to some extent, but also... if a product requires a user to get 100 complicated and confusing steps all correct in order for the product to work, then that's usually best thought of as a product design problem, not a user problem. Making the plan at least somewhat robust to people behaving realistically less-than-perfectly is itself part of the problem.
Second: looking for the problem by testing on other fields itself has subtle failure modes, i.e. various ways to Not Measure What You Think You Are Measuring. A couple off-the-cuff examples:
And to be clear, I don't think of these as nitpicks, or as things which could go wrong separately from all the things originally listed. They're just the same central kinds of failure modes showing up again, and I expect them to generalize to other hacky attempts to tackle the problem.
Third: it doesn't really matter whether the model is trying to make it hard for us to notice the problem. What matters is (a) how likely we are to notice the problem "by default", and (b) whether the AI makes us more or less likely to notice the problem, regardless of whether it's trying to do so. The first story at top-of-thread is a good central example here:
Generalizing that story to attempts to outsource alignment work to earlier AI: perhaps the path to moderately-capable intelligence looks like applying lots of search/optimization over shallow heuristics. If the selection pressure is sufficient, that system may well learn to e.g. be sycophantic in exactly the situations where it won't be caught... though it would be "learning" a bunch of shallow heuristics with that de-facto behavior, rather than intentionally "trying" to be sycophantic in exactly those situations. Then the sycophantic-on-hard-to-verify-domains AI tells the developers that of course their favorite ideas for aligning the next generation of AI will work great, and it all goes downhill from there.
scheming is the main plausible source of catastrophic risk from the first AIs that either pose substantial misalignment risk or that are extremely useful...
Seems quite wrong. The main plausible source of catastrophic risk from the first AIs that either pose substantial misalignment risk or that are extremely useful is that they cause more powerful AIs to be built which will eventually be catastrophic, but which have problems that are not easily iterable-upon (either because problems are hidden, or things move quickly, or ...).
And causing more powerful AIs to be built which will eventually be catastrophic is not something which requires a great deal of intelligent planning; humanity is already racing in that direction on its own, and it would take a great deal of intelligent planning to avert it. This story, for example:
This story sounds clearly extremely plausible (do you disagree with that?), involves exactly the sort of AI you're talking about ("the first AIs that either pose substantial misalignment risk or that are extremely useful"), but the catastropic risk does not come from that AI scheming. It comes from people being dumb by default, the AI making them think it's ok (without particularly strategizing to do so), and then people barreling ahead until it's too late.
These other problems all seem like they require the models to be way smarter in order for them to be a big problem.
Also seems false? Some of the relevant stories:
A few of the other stories also seem debatable depending on trajectory of different capabilities, but at the very least those three seem clearly potentially relevant even for the first highly dangerous or useful AIs.
Yeah, I'm aware of that model. I personally generally expect the "science on model organisms"-style path to contribute basically zero value to aligning advanced AI, because (a) the "model organisms" in question are terrible models, in the sense that findings on them will predictably not generalize to even moderately different/stronger systems (like e.g. this story), and (b) in practice IIUC that sort of work is almost exclusively focused on the prototypical failure story of strategic deception and scheming, which is a very narrow slice of the AI extinction probability mass.
I think a very common problem in alignment research today is that people focus almost exclusively on a specific story about strategic deception/scheming, and that story is a very narrow slice of the AI extinction probability mass. At some point I should probably write a proper post on this, but for now here are few off-the-cuff example AI extinction stories which don't look like the prototypical scheming story. (These are copied from a Facebook thread.)
Kudos for correctly identifying the main cruxy point here, even though I didn't talk about it directly.
The main reason I use the term "propaganda" here is that it's an accurate description of the useful function of such papers, i.e. to convince people of things, as opposed to directly advancing our cutting-edge understanding/tools. The connotation is that propagandists over the years have correctly realized that presenting empirical findings is not a very effective way to convince people of things, and that applies to these papers as well.
And I would say that people are usually correct to not update much on empirical findings! Not Measuring What You Think You Are Measuring is a very strong default, especially among the type of papers we're talking about here.
That's basically Do What I Mean.