I'm interested in soliciting takes on pretty much anything people think Anthropic should be doing differently. One of Alignment Stress-Testing's core responsibilities is identifying any places where Anthropic might be making a mistake from a safety perspective—or even any places where Anthropic might have an opportunity to do something really good that we aren't taking—so I'm interested in hearing pretty much any idea there that I haven't heard before.[1] I'll read all the responses here, but I probably won't reply to any of them to avoid revealing anythin...
My current tenative guess is that this is somewhat worse than other alignment science projects that I'd recommend at the margin, but somewhat better than the 25th percentile project currently being done. I'd think it was good at the margin (of my recommendation budget) if the project could be done in a way where we think we'd learn generalizable scalable oversight / control approaches.
On o3: for what feels like the twentieth time this year, I see people freaking out, saying AGI is upon us, it's the end of knowledge work, timelines now clearly in single-digit years, etc, etc. I basically don't buy it, my low-confidence median guess is that o3 is massively overhyped. Major reasons:
What do you mean by "easy" here?
Prior estimates imply that the compute used to train a future frontier model could also be used to run tens or hundreds of millions of human equivalents per year at the first time when AIs are capable enough to dominate top human experts at cognitive tasks[1] (examples here from Holden Karnofsky, here from Tom Davidson, and here from Lukas Finnveden). I think inference time compute scaling (if it worked) might invalidate this picture and might imply that you get far smaller numbers of h...
Work that I’ve done on techniques for mitigating misalignment risk often makes a number of conservative assumptions about the capabilities of the AIs we’re trying to control. (E.g. the original AI control paper, Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats, How to prevent collusion when using untrusted models to monitor each other.) For example:
Some other important categories:
Here are the 2024 AI safety papers and posts I like the most.
The list is very biased by my taste, by my views, by the people that had time to argue that their work is important to me, and by the papers that were salient to me when I wrote this list. I am highlighting the parts of papers I like, which is also very subjective.
Important ideas - Introduces at least one important idea or technique.
★★★ The intro to AI control (The case for ensuring that powerful AIs are controlled)
★★ Detailed write-ups of AI worldviews I am sympathetic to (Without fun...
Thanks for sharing! I'm a bit surprised that sleeper agent is listed as the best demo (e.g., higher than alignment faking). Do you focus on the main idea instead of specific operationalization here -- asking because I think backdoored/password-locked LMs could be quite different from real-world threat models.
Here's something that confuses me about o1/o3. Why was the progress there so sluggish?
My current understanding is that they're just LLMs trained with RL to solve math/programming tasks correctly, hooked up to some theorem-verifier and/or an array of task-specific unit tests to provide ground-truth reward signals. There are no sophisticated architectural tweaks, not runtime-MCTS or A* search, nothing clever.
Why was this not trained back in, like, 2022 or at least early 2023; tested on GPT-3/3.5 and then default-packaged into GPT-4 alongside RLHF? If OpenAI ...
simple ideas often require tremendous amounts of effort to make work.
x-posting a kinda rambling thread I wrote about this blog post from Tilde research.
---
If true, this is the first known application of SAEs to a found-in-the-wild problem: using LLMs to generate fuzz tests that don't use regexes. A big milestone for the field of interpretability!
I'll discussed some things that surprised me about this case study in
---
The authors use SAE features to detect regex usage and steer models not to generate regexes. Apparently the company that ran into this problem already tried and discarded baseline approaches like better prompt ...
This uses transformers
, which is IIUC way less efficient for inference than e.g. vllm
, to an extent that is probably unacceptable for production usecases.
I'm currently working as a contractor at Anthropic in order to get employee-level model access as part of a project I'm working on. The project is a model organism of scheming, where I demonstrate scheming arising somewhat naturally with Claude 3 Opus. So far, I’ve done almost all of this project at Redwood Research, but my access to Anthropic models will allow me to redo some of my experiments in better and simpler ways and will allow for some exciting additional experiments. I'm very grateful to Anthropic and the Alignment Stress-Testing team for providi...
I asked Rohin Shah what the debate agenda is about and he said (off the cuff, not necessarily worded well) (context omitted) (emphasis mine):
...Suppose you have any task where given an input x the AI has to produce some output y. (Can be question answering, arbitrary chatbot stuff, being an agent, whatever.)
Debate to me is a family of procedures for training AIs in such settings. One example such procedure is: sample two possible outputs y1 and y2, then have two AIs debate each other about which output is better (one assigned to y1 and the other assigned to y
I could imagine other ways you might choose to instead train your untrusted monitor, which could benefit from debate:
Idea for LLM support for writing LessWrong posts: virtual comments.
Back in August I discussed with Rafe & Oliver a bit about how to integrate LLMs into LW2 in ways which aren't awful and which encourage improvement---particularly using the new 'prompt caching' feature. To summarize one idea: we can use long-context LLMs with prompt caching to try to simulate various LW users of diverse perspectives to write useful feedback on drafts for authors.
(Prompt caching (eg) is the Transformer version of the old RNN hidden-state caching trick, where you run an i...
Yeah the LW team has been doing this sort of thing internally, still in the experimental phase. I don't know if we've used all the tricks listed here yet.
Phi-4: Synthetic data works. Pretraining's days are numbered.
Microsoft just announced Phi-4, a 14B parameter model that matches GPT-4o on some difficult benchmarks. The accompanying technical report offers a glimpse into the growing importance of synthetic data and how frontier model training is changing.
Some takeaways:
I don't think Phi-4 offers convincing evidence either way. You can push performance on verifiable tasks quite far without the model becoming generally more capable. AlphaZero doesn't imply that scaling with its methods gestures at general superintelligence, and similarly with Phi-4.
In contrast, using o1-like training as a way to better access ground truth in less tractable domains seems more promising, since by some accounts its tactics on long reasoning traces work even in non-technical domains (unlike for DeepSeek R1), possibly because they are emergent ...
Concrete benchmark proposals for how to detect mode-collapse and AI slop and ChatGPTese, and why I think this might be increasingly important for AI safety, to avoid 'whimper' or 'em hell' kinds of existential risk: https://gwern.net/creative-benchmark EDIT: resubmitted as linkpost.
People inexplicably seem to favor extremely bad leaders-->people seem to inexplicably favor bad AIs.
Agency = Prediction + Decision.
AIXI is an idealized model of a superintelligent agent that combines "perfect" prediction (Solomonoff Induction) with "perfect" decision-making (sequential decision theory).
OpenAI's o1 is a real-world "reasoning model" that combines a superhuman predictor (an LLM like GPT-4) with advanced decision-making (implicit search via chain of thought trained by RL).
To be clear: o1 is no AIXI. But AIXI, as an ideal, can teach us something about the future of o1-like systems.
AIXI teaches us that agency is simple. It involves just two ra...
So let's call "reasoning models" like o1 what they really are: the first true AI agents.
I think the distinction between systems that perform a single forward pass and then stop and systems that have an OODA loop (tool use) is more stark than the difference between "reasoning" and "chat" models, and I'd prefer to use "agent" for that distinction.
I do think that "reasoning" is a bit of a market-y name for this category of system though. "chat" vs "base" is a great choice of words, and "chat" is basically just a description of the RL objective those models were trained with.
If I were the terminology czar, I'd call o1 a "task" model or a "goal" model or something.
LW2 search idea: hierarchical embedding trees using some nifty "seriation" list sorting tricks I've developed for Gwern.net popups/tagging purposes.
An example snippet of a rogue internal deployment threat model that I find fairly compelling:
What's a bad thing that the agent can do with the jailbreak that it can't just do in the unmonitored scaffold?
Edit: dumb question, oops: obviously the schemer will have affordances that it doesn't have within the unmonitored scaffold / there are actions where it's helpful to jailbreak the monitor. E.g. submitting a pull request, where the code will be read by the monitor. So finding a jailbreak is helpful to the schemer.
Project proposal: No-holds-barred jailbreak attacks and defenses for control
Normally we’ve done control research under the assumption that the red team isn’t able to use techniques like GCG to make targeted jailbreaks for the trusted monitor. Can the blue team defend if we relax that assumption (e.g. because we’re worried the model might be able to start a rogue deployment in which it runs GCG)?
The blue team can try a variety of strategies here.
(I'm sharing this here because I needed to link to it, and I thought I might as well make it public.)
When preventing high stakes failures, a crucial bottleneck is the proportion of actions that you can audit: that is, investigate the action further for the purpose of finding evidence that the AI is scheming. (See here for more on this. In particular, note that this might be different from the problem of investigating an action for the purpose of learning whether that action is dangerous.) If we need to rely o...
The term "AI misuse" encompasses two fundamentally different threat models that deserve separate analysis and different mitigation strategies:
Technical measures to prevent users from using the AI for particular tasks don’t help against the threat of the lab CEO trying to use the AI for those harmful tasks
Actually, it is not that clear to me. I think adversarial robustness is helpful (in conjunction with other things) to prevent CEOs from misusing models.
If at some point in a CEO trying to take over wants to use HHH to help them with the takeover, that model will likely refuse to do egregiously bad things. So the CEO might need to use helpful-only models. But there might be processes in plac...
Alignment researchers should think hard about switching to working on AI Control
I think Redwood Research’s recent work on AI control really “hits it out of the park”, and they have identified a tractable and neglected intervention that can make AI go a lot better. Obviously we should shift labor until the marginal unit of research in either area decreases P(doom) by the same amount. I think that implies lots of alignment researchers should shift to AI control type work, and would naively guess that the equilibrium is close to 50/50 across people who a...
Hiliariously, it seems likely that our disagreement is even more meta, on the question of "how do you know when you have enough information to know", or potentially even higher, e.g. "how much uncertainty should one have given that they think they know" etc.
A theory of how alignment research should work
(cross-posted from danielfilan.com)
Epistemic status:
Maybe obvious to everyone but me, or totally wrong (this doesn't really grapple with the challenges of working in a domain where an intelligent ...
When I wrote that, I wasn't thinking so much about evals / model organisms as stuff like:
basically stuff along the lines of "when you put agents in X situation, they tend to do Y thing", rather than trying to understand latent causes / capabilities