I do AI Alignment research. Currently at METR, but previously at: Redwood Research, UC Berkeley, Good Judgment Project.
I'm also a part-time fund manager for the LTFF.
Obligatory research billboard website: https://chanlawrence.me/
I mean, we don't know all the details, but Qwen2 was explicitly trained on synthetic data from Qwen1.5 + "high-quality multi-task instruction data". I wouldn't be surprised if the same were true of Qwen 1.5.
From the Qwen2 report:
Quality Enhancement The filtering algorithm has been refined with additional heuristic and modelbased methods, including the use of the Qwen models to filter out low-quality data. Moreover, these
models are utilized to synthesize high-quality pre-training data. (Page 5)
[...]
Similar to previous Qwen models, high-quality multi-task instruction data is integrated into the
Qwen2 pre-training process to enhance in-context learning and instruction-following abilities.
Similarly, Gemma 2 had its pretraining corpus filtered to remove "unwanted or unsafe utterances". From the Gemma 2 tech report:
We use the same data filtering techniques as Gemma 1. Specifically, we filter the pretraining dataset to reduce the risk of unwanted or unsafe utterances, filter out certain personal information or other sensitive data, decontaminate evaluation sets from our pre-training data mixture, and reduce the risk of recitation by minimizing the proliferation of sensitive outputs. (Page 3)
[...]
We undertook considerable safety filtering of our pre-training data to reduce the likelihood of our
pre-trained and fine-tuned checkpoints producing harmful content. (page 10)
After thinking about it more, I think the LLaMA 1 refusals strongly suggest that this is an artefact of training data.So I've unendorsed the comment above.
It's still worth noting that modern models generally have filtered pre-training datasets (if not wholely synthetic or explicitly instruction following datasets), and it's plausible to me that this (on top of ChatGPT contamination) is a large part of why we see much better instruction following/more eloquent refusals in modern base models.
It's worth noting that there's reasons to expect the "base models" of both Gemma2 and Qwen 1.5 to demonstrate refusals -- neither is trained on unfilted webtext.
We don't know what 1.5 was trained on, but we do know that Qwen2's pretraining data both contains synthetic data generated by Qwen1.5, and was filtered using Qwen1.5 models. Notably, its pretraining data explicitly includes "high-quality multi-task instruction data"! From the Qwen2 report:
Quality Enhancement The filtering algorithm has been refined with additional heuristic and modelbased methods, including the use of the Qwen models to filter out low-quality data. Moreover, these
models are utilized to synthesize high-quality pre-training data. (Page 5)
[...]
Similar to previous Qwen models, high-quality multi-task instruction data is integrated into the
Qwen2 pre-training process to enhance in-context learning and instruction-following abilities.
I think this had a huge effect on Qwen2: Qwen2 is able to reliably follow both the Qwen1.5 chat template (as you note) as well as the "User: {Prompt}\n\nAssistant: " template. This is also reflected in their high standardized benchmark scores -- the "base" models do comparably to the instruction finetuned ones! In other words, Qwen2 "base" models are pretty far from traditional base models a la GPT-2 or Pythia as a result of explicit choices made when generating their pretraining data and this explains its propensity for refusals. I wouldn't be surprised if the same were true of the 1.5 models.
I think the Gemma 2 base models were not trained on synthetic data from larger models but its pretraining dataset was also filtered to remove "unwanted or unsafe utterances". From the Gemma 2 tech report:
We use the same data filtering techniques as Gemma 1. Specifically, we filter the pretraining dataset to reduce the risk of unwanted or unsafe utterances, filter out certain personal information or other sensitive data, decontaminate evaluation sets from our pre-training data mixture, and reduce the risk of recitation by minimizing the proliferation of sensitive outputs. (Page 3)
[...]
We undertook considerable safety filtering of our pre-training data to reduce the likelihood of our
pre-trained and fine-tuned checkpoints producing harmful content. (page 10)
My guess is this filtering explains why the model refuses, moreso than (and in addition to?) ChatGPT contamination. Once you remove all the "unsafe completions"
I don't know what's going on with LLaMA 1, though.
Ah, you're correct, it's from the original instructGPT release in Jan 2022:
https://openai.com/index/instruction-following/
(The Anthropic paper I cited predates ChatGPT by 7 months)
Pretty sure Anthropic's early assistant stuff used the word this way too: See e.g. Bai et al https://arxiv.org/abs/2204.05862
But yes, people complained about it a lot at the time
Very cool work; I'm glad it was done.
That being said, I agree with Fabien that the title is a bit overstated, insofar as it's about your results in particular::
Thus, fine-tuned performance provides very little information about the best performance that would be achieved by a large number of actors fine-tuning models with random prompting schemes in parallel.
It's a general fact of ML that small changes in finetuning setup can greatly affect performance if you're not careful. In particular, it seems likely to me that the empirical details that Fabien asks for may affect your results. But this has little to do with formatting, and much more to deal with the intrinsic difficulty of finetuning LLMs properly.
As shown in Fabien's password experiments, there are many ways to mess up on finetuning (including by having a bad seed), and different finetuning techniques are likely to lead to different levels of performance. (And the problem gets worse as you start using RL and not just SFT) So it's worth being very careful on claiming that the results of any particular finetuning run upper bounds model capabilities. But it's still plausible that trying very hard on finetuning elicits capabilities more efficiently than trying very hard on prompting, for example, which I think is closer to what people mean when they say that finetuning is an upper bound on model capabilities.
Have you tried instead 'skinny' NNs with a bias towards depth,
I haven't -- the problem with skinny NNs is stacking MLP layers quickly makes things uninterpretable, and my attempts to reproduce slingshot -> grokking were done with the hope of interpreting the model before/after the slingshots.
That being said, you're probably correct that having more layers does seem related to slingshots.
(Particularly for MLPs, which are notorious for overfitting due to their power.)
What do you mean by power here?
Worth noting that both some of Anthropic's results and Lauren Greenspan's results here (assuming I understand her results correctly) give a clear demonstration of learned (even very toy) transformers not being well-modeled as sets of skip trigrams.
I’m not disputing that they were trained with next token prediction log loss (if you read the tech reports they claim to do exactly this) — I’m just disputing the “on the internet” part, due to the use of synthetic data and private instruction following examples.