I'm not talking about narrowly your claim; I just think this very fundamentally confuses most people's basic models of the world. People expect, from their unspoken models of "how technological products improve," that long before you get a mind-bendingly powerful product that's so good it can easily kill you, you get something that's at least a little useful to you (and then you get something that's a little more useful to you, and then something that's really useful to you, and so on). And in fact that is roughly how it's working — for programmers, not fo...
To put it another way: we probably both agree that if we had gotten AI personal assistants that shop for you and book meetings for you in 2024, that would have been at least some evidence for shorter timelines. So their absence is at least some evidence for longer timelines. The question is what your underlying causal model was: did you think that if we were going to get superintelligence by 2027, then we really should see personal assistants in 2024? A lot of people strongly believe that, you (Daniel) hardly believe it at all, and I'm somewhere in the mid...
Interestingly, I've heard from tons of skeptics I've talked to (e.g. Tim Lee, CSET people, AI Snake Oil) that timelines to actual impacts in the world (such as significant R&D acceleration or industrial acceleration) are going to be way longer than we say because AIs are too unreliable and risky, therefore people won't use them. I was more dismissive of this argument before but:
Yeah, good point, I've been surprised by how uninterested the companies have been in agents.
Another effect here is that the AI companies often don't want to be as reckless as I am, e.g. letting agents run amok on my machines.
One thing that I think is interesting, which doesn't affect my timelines that much but cuts in the direction of slower: once again I overestimated how much real world use anyone who wasn't a programmer would get. I definitely expected an off-the-shelf agent product that would book flights and reserve restaurants and shop for simple goods, one that worked well enough I would actually use it (and I expected that to happen before the one hour plus coding tasks were solved; I expected it to be concurrent with half hour coding tasks).
I can't tell if the fact th...
My timelines are now roughly similar on the object level (maybe a year slower for 25th and 1-2 years slower for 50th), and procedurally I also now defer a lot to Redwood and METR engineers. More discussion here: https://www.lesswrong.com/posts/K2D45BNxnZjdpSX2j/ai-timelines?commentId=hnrfbFCP7Hu6N6Lsp
I agree the discussion holds up well in terms of the remaining live cruxes. Since this exchange, my timelines have gotten substantially shorter. They're now pretty similar to Ryan's (they feel a little bit slower but within the noise from operationalizations being fuzzy; I find it a bit hard to think about what 10x labor inputs exactly looks like).
The main reason they've gotten shorter is that performance on few-hour agentic tasks has moved almost twice as fast as I expected, and this seems broadly non-fake (i.e. it seems to be translating into real ...
Of course AI company employees have the most hands-on experience
FWIW I am not sure this is right--most AI company employees work on things other than "try to get as much work as possible from current AI systems, and understand the trajectory of how useful the AIs will be". E.g. I think I have more personal experience with running AI agents than people at AI companies who don't actively work on AI agents.
There are some people at AI companies who work on AI agents that use non-public models, and those people are ahead of the curve. But that's a minority.
One thing that I think is interesting, which doesn't affect my timelines that much but cuts in the direction of slower: once again I overestimated how much real world use anyone who wasn't a programmer would get. I definitely expected an off-the-shelf agent product that would book flights and reserve restaurants and shop for simple goods, one that worked well enough I would actually use it (and I expected that to happen before the one hour plus coding tasks were solved; I expected it to be concurrent with half hour coding tasks).
I can't tell if the fact th...
(Cross-posted to EA Forum.)
I’m a Senior Program Officer at Open Phil, focused on technical AI safety funding. I’m hearing a lot of discussion suggesting funding is very tight right now for AI safety, so I wanted to give my take on the situation.
At a high level: AI safety is a top priority for Open Phil, and we are aiming to grow how much we spend in that area. There are many potential projects we'd be excited to fund, including some potential new AI safety orgs as well as renewals to existing grantees, academic research projects, upskilling grants, and mor...
my guess is most of that success is attributable to the work on RLHF, since that was really the only substantial difference between Chat-GPT and GPT-3
I don't think this is right -- the main hype effect of chatGPT over previous models feels like it's just because it was in a convenient chat interface that was easy to use and free. My guess is that if you did a head-to-head comparison of RLHF and kludgey random hacks involving imitation and prompt engineering, they'd seem similarly cool to a random journalist / VC, and generate similar excitement.
I don't think this is right -- the main hype effect of chatGPT over previous models feels like it's just because it was in a convenient chat interface that was easy to use and free.
I don't have extensive relevant expertise, but as a personal datapoint: I used Davinci-002 multiple times to generate an interesting dialogue in order to test its capabilities. I ran several small-scale Turing tests, and the results were quite unimpressive in my opinion. When ChatGPT came out, I tried it out (on the day of its release) and very quickly felt that it was qualitati...
I strongly disagree with the "best case" thing. Like, policies could just learn human values! It's not that implausible.
Yes, sorry, "best case" was oversimplified. What I meant is that generalizing to want reward is in some sense the model generalizing "correctly;" we could get lucky and have it generalize "incorrectly" in an important sense in a way that happens to be beneficial to us. I discuss this a bit more here.
...But if Alex did initially develop a benevolent goal like “empower humans,” the straightforward and “naive” way of acting on that goal wo
Yeah, I agree this is a good argument structure -- in my mind, maximizing reward is both a plausible case (which Richard might disagree with) and the best case (conditional on it being strategic at all and not a bag of heuristics), so it's quite useful to establish that it's doomed; that's the kind of structure I was going for in the post.
Note that the "without countermeasures" post consistently discusses both possibilities (the model cares about reward or the model cares about something else that's consistent with it getting very high reward on the training dataset). E.g. see this paragraph from the above-the-fold intro:
...Once this progresses far enough, the best way for Alex to accomplish most possible “goals” no longer looks like “essentially give humans what they want but take opportunities to manipulate them here and there.” It looks more like “seize the power to permanently direct how
Yeah I agree more of the value of this kind of exercise (at least within the community) is in revealing more granular disagreements about various things. But I do think there's value in establishing to more external people something high level like "It really could be soon and it's not crazy or sci fi to think so."
Can you say more about what particular applications you had in mind?
Stuff like personal assistants who write emails / do simple shopping, coding assistants that people are more excited about than they seem to be about Codex, etc.
(Like I said in the main post, I'm not totally sure what PONR refers to, but don't think I agree that the first lucrative application marks a PONR -- seems like there are a bunch of things you can do after that point, including but not limited to alignment research.)
I don't see it that way, no. Today's coding models can help automate some parts of the ML researcher workflow a little bit, and I think tomorrow's coding models will automate more and more complex parts, and so on. I think this expansion could be pretty rapid, but I don't think it'll look like "not much going on until something snaps into place."
(Coherence aside, when I now look at that number it does seem a bit too high, and I feel tempted to move it to 2027-2028, but I dunno, that kind of intuition is likely to change quickly from day to day.)
Hm, yeah, I bet if I reflected more things would shift around, but I'm not sure the fact that there's a shortish period where the per-year probability is very elevated followed by a longer period with lower per-year probability is actually a bad sign.
Roughly speaking, right now we're in an AI boom where spending on compute for training big models is going up rapidly, and it's fairly easy to actually increase spending quickly because the current levels are low. There's some chance of transformative AI in the middle of this spending boom -- and because resou...
(+1. I totally agree that input growth will slow sometime if we don't get TAI soon. I just think you have to be pretty sure that it slows right around 2040 to have the specific numbers you mention, and smoothing out when it will slow down due to that uncertainty gives a smoother probability distribution for TAI.)
Where does the selection come from? Will the designers toss a really impressive AI for not getting reward on that one timestep? I think not.
I was talking about gradient descent here, not designers.
It doesn't seem like it would have to prevent us from building computers if it has access to far more compute than we could access on Earth. It would just be powerful enough to easily defeat the kind of AIs we could train with the relatively meager computing resources we could extract from Earth. In general the AI is a superpower and humans are dramatically technologically behind, so it seems like it has many degrees of freedom and doesn't have to be particularly watching for this.
Neutralizing computational capabilities doesn't seem to involve total destruction of physical matter or human extinction though, especially for a very powerful being. Seems like it'd be basically just as easy to ensure we + future AIs we might train are no threat as it is to vaporize the Earth.
My answer is a little more prosaic than Raemon. I don't feel at all confident that an AI that already had God-like abilities would choose to literally kill all humans to use their bodies' atoms for its own ends; it seems totally plausible to me that -- whether because of exotic things like "multiverse-wide super-rationality" or "acausal trade" or just "being nice" -- the AI will leave Earth alone, since (as you say) it would be very cheap for it to do so.
The thing I'm referring to as "takeover" is the measures that an AI would take to make sure that humans...
it seems totally plausible to me that... the AI will leave Earth alone, since (as you say) it would be very cheap for it to do so.
Counterargument: the humans may build another AGI that breaks out and poses an existential threat to the first AGI.
My guess is the first AGI would want to neutralize our computational capabilities in a bunch of ways.
I'm pretty confused about how to think about the value of various ML alignment papers. But I think even if some piece of empirical ML work on alignment is really valuable for reducing x-risk, I wouldn't expect its value to take the form of providing insight to readers like you or me. So you as a reader not getting much out of it is compatible with the work being super valuable, and we probably need to assess it on different terms.
The main channel of value that I see for doing work like "learning to summarize" and the critiques project and various interpret...
I was mainly talking about the current margin when I talked about how excited I am about the theoretical vs empirical work I see "going on" right now and how excited I tend to be about currently-active researchers who are doing theory vs empirical research. And I was talking about the future when I said that I expect empirical work to end up with the lion's share of credit for AI risk reduction.
Eliezer, Bostrom, and co certainly made a big impact in raising the problem to people's awareness and articulating some of its contours. It's kind of a matter of s...
Hm, not sure I understand but I wasn't trying to make super specific mechanistic claims here -- I agree that what I said doesn't reduce confusion about the specific internal mechanisms of how lying gets to be hard for most humans, but I wasn't intending to claim that it was. I also should have said something like "evolutionary, cultural, and individual history" instead (I was using "evolution" as a shorthand to indicate it seems common among various cultures but of course that doesn't mean don't-lie genes are directly bred into us! Most human universals ar...
I'm agnostic about whether the AI values reward terminally or values some other complicated mix of things. The claim I'm making is behavioral -- a claim that the strategy of "try to figure out how to get the most reward" would be selected over other strategies like "always do the nice thing."
The strategy could be compatible with a bunch of different psychological profiles. "Playing the training game" is a filter over models -- lots of possible models could do it, the claim is just that we need to reason about the distribution of psychologies given that the...
Geoffrey Irving, Jan Leike, Paul Christiano, Rohin Shah, and probably others were doing various kinds of empirical work a few years before Redwood (though I would guess Oliver doesn't like that work and so wouldn't consider it a counterexample to his view).
Yeah, I think Open AI tried to do some empirical work, but approximately just produced capability progress, in my current model of the world (though I also think the incentive environment there was particularly bad). I feel confused about the "learning to summarize from human feedback" work, and currently think it was overall bad for the world, but am not super confident (in general I feel very confused about the sign of RLHF research).
I think Rohin Shah doesn't think of himself as having produced empirical work that helps with AI Alignment, but only to ha...
I agree that in an absolute sense there is very little empirical work that I'm excited about going on, but I think there's even less theoretical work going on that I'm excited about, and when people who share my views on the nature of the problem work on empirical work I feel that it works better than when they do theoretical work.
The gradient pressure towards valuing reward terminally when you've already figured out reliable strategies for doing what humans want, seems very weak....in practice, it seems to me like these differences would basically only happen due to operator error, or cosmic rays, or other genuinely very rare events (as you describe in the "Security Holes" section).
Yeah, I disagree. With plain HFDT, it seems like there's continuous pressure to improve things on the margin by being manipulative -- telling human evaluators what they want to hear, playing to pervas...
Here is the real chasm between the AI safety movement and the ML industry/academia. One field is entirely driven by experimental results; the other is dominated so totally by theory that its own practitioners deny that there can be any meaningful empirical aspect to it, at least, not until the moment when it's too late to make any difference.
To put a finer point on my view on theory vs empirics in alignment:
In general, all of these stories seem to rely on a very fast form of instrumental convergence to playing the Training Game, such that "learn roughly what humans want, and then get progressively better at doing that, plus learn some extra ways to earn reward when crappy human feedback disagrees with what humans would actually want" is disfavored on priors to "learn to pursue [insert objective] and get progressively better at pursuing it until you eventually hit situational awareness and learn to instrumentally game the training process."
I think the secon...
To your point, sure, an H100 simulator will get perfect reward, but the model doesn't see x′, so how would it acquire the ability to simulate H100?
In the worst-case game we're playing, I can simply say "the reporter we get happens to have this ability because that happens to be easier for SGD to find than the direct translation ability."
When living in worst-case land, I often imagine random search across programs rather than SGD. Imagine we were plucking reporters at random from a giant barrel of possible reporters, rejecting any reporter which didn't p...
The question here is just how it would generalize given that it was trained on H_1, H_2,...H_10. To make arguments about how it would generalize, we ask ourselves what internal procedure it might have actually learned to implement.
Your proposal is that it might learn the procedure "just be honest" because that would perform perfectly on this training distribution. You contrast this against the procedure "just answer however the evaluator you've seen most recently would answer," which would get a bad loss because it would be penalized by the stronger evalu...
Yes, that's right. The key thing I'd add to 1) is that ARC believes most kinds of data augmentation (giving the human AI assistance, having the human think longer, giving them other kinds of advantages) are also unlikely to work, so you'd need to do something to "crack open the black box" and penalize ways the reporter is computing its answer. They could still be surprised by data augmentation techniques but they'd hold them to a higher standard.
This proposal has some resemblance to turning reflection up to 11. In worst-case land, the counterexample would be a reporter that answers questions by doing inference in whatever Bayes net corresponds to "the world-understanding that the smartest/most knowledgeable human in the world" has; this understanding could still be missing things that the prediction model knows.
...I see why the approach I mention might have some intrinsic limitations in its ability to elicit latent knowledge though. The problem is that even if it understands roughly that it has incentives to use most of what it knows when we ask him simulating the prediction of someone with its own characteristics (or 1400 IQ), given that with ELK we look for an global maximum (we want that it uses ALL its knowledge), there's always an uncertainty on whether it did understand that point or not for extreme intelligence / examples or whether it tries to fit to the tr
[Paul/Mark can correct me here] I would say no for any small-but-interesting neural network (like small language models); I think like, linear regressions where we've set the features it's kind of a philosophical question (though I'd say yes).
In some sense, ELK as a problem only even starts "applying" to pretty smart models (ones who can talk including about counterfactuals / hypotheticals, as discussed in this appendix.) This is closely related to how alignment as a problem only really starts applying to models smart enough to be thinking about how to pursue a goal.
Again trying to answer this one despite not feeling fully solid. I'm not sure about the second proposal and might come back to it, but here's my response to the first proposal (force ontological compatibility):
The counterexample "Gradient descent is more efficient than science" should cover this proposal because it implies that the proposal is uncompetitive. Basically, the best Bayes net for making predictions could just turn out to be the super incomprehensible one found by unrestricted gradient descent, so if you force ontological compatibility then you ...
This broadly seems right. Some details:
Warning: this is not a part of the report I'm confident I understand all that well; I'm trying anyway and Paul/Mark can correct me if I messed something up here.
I think the idea here is like:
This proposal has some resemblance to turning reflection up to 11, and the key question you raise is the source of the counterexample in the worst case:
...That said, I feel like the main problem is to know whether such a model would do well out-of-distribution (i.e on problems no human is able to resolve). I feel like using the approach I suggested, we should able to use the great variations of capacities among humans and algorithms to increase the chances that our algorithm do well when it's much better....I don't know whether asymptotically, I'd expect th
I am confused. Perhaps the above sentence is true in some tautological sense I'm missing. But in the sections of the report listing training strategies and corresponding counterexamples, I wouldn't describe most counterexamples as based on ontology mismatch.
In the report, the first volley of examples and counterexamples are not focused solely on ontology mismatch, but everything after the relevant section is.
...So: do some of your training strategies work perfectly in the nice-ontology case, where the model has a concept of "the diamond is in the room"?
In terms of the relationship to MIRI's visible thoughts project, I'd say the main difference is that ARC is attempting to solve ELK in the worst case (where the way the AI understands the world could be arbitrarily alien from and more sophisticated than the way the human understands the world), whereas the visible thoughts project is attempting to encourage a way of developing AI that makes ELK easier to solve (by encouraging the way the AI thinks to resemble the way humans think). My understanding is MIRI is quite skeptical that a solution to worst-case ELK is possible, which is why they're aiming to do something more like "make it more likely that conditions are such that ELK-like problems can be solved in practice."
Thanks Ruby! I'm really glad you found the report accessible.
One clarification: Bayes nets aren't important to ARC's conception of the problem of ELK or its solution, so I don't think it makes sense to contrast ARC's approach against an approach focused on language models or describe it as seeking a solution via Bayes nets.
The form of a solution to ELK will still involve training a machine learning model (which will certainly understand language and could just be a language model) using some loss function. The idea that this model could learn to represent ...
My understanding is that we are eschewing Problem 2, with one caveat -- we still expect to solve the problem if the means by which the diamond was stolen or disappeared could be beyond a human's ability to comprehend, as long as the outcome (that the diamond isn't still in the room) is still comprehensible. For example, if the robber used some complicated novel technology to steal the diamond and hack the camera, there would be many things about the state that the human couldn't understand even if the AI tried to explain it to them (at least without going ...
Just want to draw out and highlight something mentioned in passing in the "You want to solve a problem in as much generality as possible..." section. Not only would it be great if you could solve a problem in the worst case, the worst case assumption is also often radically easier to think about than trying to think about realistic cases. In some sense the worst case assumption is the second-simplest assumption you could possibly make about the empirical situation (the simplest being the best case assumption -- "this problem never comes up"). My understanding is that proving theorems about average case phenomena is a huge pain and often comes much after proofs about the worst case bounds.
I think this probably depends on the field. In machine learning, solving problems under worst-case assumptions is usually impossible because of the no free lunch theorem. You might assume that a particular facet of the environment is worst-case, which is a totally fine thing to do, but I don't think it's correct to call it the "second-simplest solution", since there are many choices of what facet of the environment is worst-case.
One keyword for this is "partial specification", e.g. here is a paper I wrote that makes a minimal set of statistical assumptions...
Ah got it. To be clear, Paul and Mark do in practice consider a bank of multiple counterexamples for each strategy with different ways the human and predictor could think, though they're all pretty simple in the same way the Bayes net example is (e.g. deduction from a set of axioms); my understanding is that essentially the same kind of counterexamples apply for essentially the same underlying reasons for those other simple examples. The doc sticks with one running example for clarity / length reasons.
Sorry, there were two things you could have meant when you said the assumption that the human uses a Bayes net seemed crucial. I thought you were asking why the builder couldn't just say "That's unrealistic" when the breaker suggested the human runs a Bayes net. The answer to that is what I said above -- because the assumption is that we're working in the worst case, the builder can't invoke unrealism to dismiss the counterexample.
If the question is instead "Why is the builder allowed to just focus on the Bayes net case?", the answer to that is the iterati...
Speaking just for myself, I think about this as an extension of the worst-case assumption. Sure, humans don't reason using Bayes nets -- but if we lived in a world where the beings whose values we want to preserve did reason about the world using a Bayes net, that wouldn't be logically inconsistent or physically impossible, and we wouldn't want alignment to fail in that world.
Additionally, I think the statement made in the report about AIs also applies to humans:
...Moreover, we think that a realistic messy predictor is pretty likely to still use strategies
The definition of "year Y compute requirements" is complicated in a kind of crucial way here, to attempt to a) account for the fact that you can't take any amount of compute and turn it into a solution for some task literally instantly, while b) capturing that there still seems to be a meaningful notion of "the compute you need to do some task is decreasing over time." I go into it in this section of part 1.
First we start with the "year Y technical difficulty of task T:"
David Roodman put together a Guesstimate model that some people might find helpful: https://www.getguesstimate.com/models/18944
To put it another way: we probably both agree that if we had gotten AI personal assistants that shop for you and book meetings for you in 2024, that would have been at least some evidence for shorter timelines. So their absence is at least some evidence for longer timelines. The question is what your underlying causal model was: did you think that if we were going to get superintelligence by 2027, then we really should see personal assistants in 2024? A lot of people strongly believe that, you (Daniel) hardly believe it at all, and I'm somewhere in the mid... (read more)