One thing we have to account for is advances architecture even in a world where Moore's law is dead, to what extent memory bandwidth is a constraint on model size, etc. You could rephrase this as how much of an "architecture overhang" exists. One frame to view this through is in era the of Moore's law we sort of banked a lot of parallel architectural advances as we lacked a good use case for such things. We now have such a use case. So the question is how much performance is sitting in the bank, waiting to be pulled out in the next 5 years.
I don't know how seriously to take the AI ASIC people, but they are claiming very large increases in capability, on the order of 100-1000x in the next 10 years, if this is a true this is a multiplier on top of increased investment. See this response from a panel including big-wigs at NVIDIA, Google, and Cerebras about projected capabilities: https://youtu.be/E__85F_vnmU?t=4016. On top of this, one has to account, too, for algorithmic advancement: https://openai.com/blog/ai-and-efficiency/
Another thing to note is though by parameter count, the largest modern models are 10000x smaller than the human brain, if one buys that parameter >= synapse idea (which most don't but is not entirely off the table), the temporal resolution is far higher. So once we get human-sized models, they may be trained almost comically faster than human minds are. So on top an architecture overhang we may have this "temporal resolution overhang", too, where once models are as powerful as the human brain they will almost certainly be trained much faster. And on top of this there is an "inference overhang" where because inference is much, much cheaper than training, once you are done training an economically useful model, you will almost tautologically have a lot of compute to exploit it with.
Hopefully I am just being paranoid (I am definitely more of a squib than a wizard in these domains), but I am seeing overhangs everywhere!
One thing we have to account for is advances architecture even in a world where Moore's law is dead, to what extent memory bandwidth is a constraint on model size, etc. You could rephrase this as how much of an "architecture overhang" exists. One frame to view this through is in era the of Moore's law we sort of banked a lot of parallel architectural advances as we lacked a good use case for such things. We now have such a use case. So the question is how much performance is sitting in the bank, waiting to be pulled out in the next 5 years.
I don't know how seriously to take the AI ASIC people, but they are claiming very large increases in capability, on the order of 100-1000x in the next 10 years, if this is a true this is a multiplier on top of increased investment. See this response from a panel including big-wigs at NVIDIA, Google, and Cerebras about projected capabilities: https://youtu.be/E__85F_vnmU?t=4016. On top of this, one has to account, too, for algorithmic advancement: https://openai.com/blog/ai-and-efficiency/
Another thing to note is though by parameter count, the largest modern models are 10000x smaller than the human brain, if one buys that parameter >= synapse idea (which most don't but is not entirely off the table), the temporal resolution is far higher. So once we get human-sized models, they may be trained almost comically faster than human minds are. So on top an architecture overhang we may have this "temporal resolution overhang", too, where once models are as powerful as the human brain they will almost certainly be trained much faster. And on top of this there is an "inference overhang" where because inference is much, much cheaper than training, once you are done training an economically useful model, you will almost tautologically have a lot of compute to exploit it with.
Hopefully I am just being paranoid (I am definitely more of a squib than a wizard in these domains), but I am seeing overhangs everywhere!