Uniqueness of arithmetic fixed points:
Notation:
Let be a fixed point on of ; that is, .
Suppose is such that . Then by the first substitution theorem, for every formula . If , then , from which it follows that .
Conversely, if and are fixed points, then , so since is closed under substitution, . Since , it follows that .
(Taken from The Logic of Provability, by G. Boolos.)
Generalized fixed point theorem:
Suppose that Ai(p1,...,pn) are n modal sentences such that Ai is modalized in pn (possibly containing sentence letters other than pjs).
Then there exists H1,...,Hn in which no pj appears such that GL⊢∧i≤n{⊡(pi↔Ai(p1,...,pn)}↔∧i≤n{⊡(pi↔Hi)}.
We will prove it by induction.
For the base step, we know by the fixed point theorem that there is H such that GL⊢⊡(p1↔Ai(p1,...,pn))↔⊡(p1↔H(p2,...,pn))
Now suppose that for j we have H1,...,Hj such that GL⊢∧i≤j{⊡(pi↔Ai(p1,...,pn)}↔∧i≤j{⊡(pi↔Hi(pj+1,...,pn))}.
By the second substitution theo
... (read more)