Uniqueness of arithmetic fixed points:
Notation:
Let be a fixed point on of ; that is, .
Suppose is such that . Then by the first substitution theorem, for every formula . If , then , from which it follows that .
Conversely, if and are fixed points, then , so since is closed under substitution, . Since , it follows that .
(Taken from The Logic of Provability, by G. Boolos.)
Generalized fixed point theorem:
Suppose that Ai(p1,...,pn) are n modal sentences such that Ai is modalized in pn (possibly containing sentence letters other than pjs).
Then there exists H1,...,Hn in which no pj appears such that GL⊢∧i≤n{⊡(pi↔Ai(p1,...,pn)}↔∧i≤n{⊡(pi↔Hi)}.
We will prove it by induction.
For the base step, we know by the fixed point theorem that there is H such that GL⊢⊡(p1↔Ai(p1,...,pn))↔⊡(p1↔H(p2,...,pn))
Now suppose that for j we have H1,...,Hj such that GL⊢∧i≤j{⊡(pi↔Ai(p1,...,pn)}↔∧i≤j{⊡(pi↔Hi(pj+1,...,pn))}.
By the second substitution theorem, GL⊢⊡(A↔B)→[F(A)↔F(B)]. Therefore we have that GL⊢⊡(pi↔Hi(pj+1,...,pn)→[⊡(pj+1↔Aj+1(p1,...,pn))↔⊡(pj+1↔Aj+1(p1,...,pi−1,Hi(pj+1,...,pn),pi+1,...,pn))].
If we iterate the replacements, we finally end up with GL⊢∧i≤j{⊡(pi↔Ai(p1,...,pn)}→⊡(pj+1↔Aj+1(H1,...,Hj,pj+1,...,pn)).
Again by the fixed point theorem, there is H′j+1 such that GL⊢⊡(pj+1↔Aj+1(H1,...,Hj,pj+1,...,pn))↔⊡[pj+1↔H′j+1(pj+2,...,pn)].
But as before, by the second substitution theorem, GL⊢⊡[pj+1↔H′j+1(pj+2,...,pn)]→[⊡(pi↔Hi(pj+1,...,pn))↔⊡(pi↔Hi(H′j+1,...,pn)).
Let H′i stand for Hi(H′j+1,...,pn), and by combining the previous lines we find that GL⊢∧i≤j+1{⊡(pi↔Ai(p1,...,pn)}→∧i≤j+1{⊡(pi↔H′i(pj+2,...,pn))}.
By Goldfarb's lemma, we do not need to check the other direction, so GL⊢∧i≤j+1{⊡(pi↔Ai(p1,...,pn)}↔∧i≤j+1{⊡(pi↔H′i(pj+2,...,pn))} and the proof is finished □
An immediate consequence of the theorem is that for those fixed points Hi and every Ai, GL⊢Hi↔Ai(H1,...,Hn).
Indeed, since GL is closed under substitution, we can make the change pi for Hi in the theorem to get that GL⊢∧i≤n{⊡(Hi↔Ai(H1,...,Hn)}↔∧i≤n{⊡(Hi↔Hi)}.
Since the righthand side is trivially a theorem of GL, we get the desired result.
One remark: the proof is wholly constructive. You can iterate the construction of fixed point following the procedure implied by the construction of the H′i to compute fixed points.