Joanna Morningstar

Posts

Sorted by New

Wiki Contributions

Comments

Sorted by

It looks like Theorem 1 can be improved slightly, by dropping the "only if" condition on . We can then code up something like Kolmogorov complexity by adding a probability transition from every site to our chosen UTM.

If you only want the weaker statement that there is no stationary distribution, it looks like there's a cheaper argument: Since is aperiodic and irreducible the hypothetical stationary distribution is unique. is closed under the action of , and (2) implies that for any , the map is an automorphism of the Markov chain. If the (infinite) transition matrix is , then can be considered as a permutation matrix with (abusing notation) . Then and so by uniqueness. So is constant on orbits of , which are all countably infinite. Hence is everywhere , a contradiction.

The above still holds if (2) is restricted to only hold for a group such that every orbit under is infinite.

I think the above argument shows why (2) is too strong; we shouldn't expect the world to look the same if you pick a "wrong" (ie. complicated) UTM to start off with. Weakening (2) might mean saying something like asserting only . To do this, we might define the measures and together (ie. finding a fixed point of a map from pairs to ). In such a model, constraints the transition probabilities, is stationary; it's not clear how one might formalise a derivation of from but it seems plausible that there is a canonical way to do it.