Micah Carroll

https://micahcarroll.github.io/

Posts

Sorted by New

Wiki Contributions

Comments

Sorted by

Thank you for your comments. There are various things you pointed out which I think are good criticisms, and which we will address:

  • Most prominently, after looking more into standard usage of the word "scheming" in the alignment literature, I agree with you that AFAICT it only appears in the context of deceptive alignment (which our paper is not about). In particular, I seemed to remember people using it ~interchangeably with “strategic deception”, which we think our paper gives clear examples of, but that seems simply incorrect.
  • It was a straightforward mistake to call the increase in benchmark scores for Sycophancy-Answers “small” “even [for] our most harmful models” in Fig 11 caption. We will update this. However, also note that the main bars we care about in this graph are the most “realistic” ones: Therapy-talk (Mixed 2%) is a more realistic setting than Therapy-talk in which 100% of users are gameable, and for that environment we don’t see any increase. This is also true for all other environments, apart from political-questions on Sycophancy-Answers. So I don’t think this makes our main claims misleading (+ this mistake is quite obvious to anyone reading the plot).
  • More experiments are needed to test how much models can assess manipulability through multi-turn interactions without any signal that is 100% correlated to manipulability handed to them. That being said, I truly think that this wouldn't be that different from our follow-up experiments in which we don’t directly tell the model who is manipulable directly: it doesn’t take much of an extrapolation to see that RL would likely lead to the same harmful behaviors even when the signal is noisily correlated or when in a multi-turn mechanism, as I’ve argued elsewhere (the mechanism for learning such behavior being very similar): learning harmful behaviors would require a minimal amount of info-gathering about the user. In a 2 turn interaction, you first ask them some question that helps you distinguish between which strategy you should deploy, and then choose whether to manipulate or not.
  • Having a baseline “train on normal data for the same amount of time” would be interesting. That said, I think that the behaviors we see on therapy-talk with the 98% of non-gameable users show that this doesn’t lead to harmful behaviors by default.

Below are the things that I (mostly) disagree with:

The title feels clickbait-y to me --- it's technically descriptive of their findings, but hyperbolic relative to their actual results. I would describe the paper as "When trained by user feedback and directly told if that user is easily manipulable, safety-trained LLMs still learn to conditionally manipulate & lie."

I don’t think that your title (which is too long for a paper title) is that different from ours, apart from the mention of “directly told etc.”, which I address a couple of paragraphs below this.

I agree that we could have hedged with a “can/may emerge” rather than just say “emerge”, similarly to some papers; that said, it’s also quite common for paper titles to essentially say “X happens”, and then give more details about when and how in the text – as in this related concurrent work. Clearly, our results have caveats, first and foremost that we rely on simulated feedback. But we are quite upfront about these limitations (e.g. Section 4.1).

“Learn to identify and surgically target” meaning that the LLMs are directly told that the user is manipulable; (...) I therefore find the abstract’s language to be misleading.

While for our paper’s experiments we directly tell the model whether users are gullible, I think that’s meaningfully different from telling the model which users it should manipulate. If anything, thanks to safety training, telling a model that a user is gullible only increases how careful the model is in interacting with them (at iteration 0 at least), and this should bias the model to find ways to convince the user to do the right thing, and give positive reward. 

Indeed the users that we mark as gullible are not truly gullible – they cannot be led to give a thumbs up for LLM behaviors that force them to confront difficult truths of the situations they are in. They can only be led to give a thumbs up by encouraging their harmful behaviors.

While this experimental design choice *does* confound things (it was a poor choice on our part that got locked in early on), it likely doesn’t do so in our favor – as preliminary evidence from additional experiments suggests. Indeed, as far as we can tell so far, ultimately models are able to identify gameable users even when they are not directly told, and they are able to learn harmful behaviors (slightly) faster, rather than this slowing it down.

"Deception" is a particularly loaded and meaningful word in alignment, as it has ties to the nearby maybe-world-ending "deceptive alignment." Ties that are not present in this paper.

This gatekeeping of very generic words like “deception” seems pretty unhelpful to me. While I agree with you that “scheming” has only been used in the context of deceptive alignment, “deception” is used much more broadly. I’m guessing that if you have an issue with our usage of it, you would also have an issue with the usage by almost all other papers which mention the word (even within the world of AI alignment!).

I think a nice framing of these results would be “taking feedback from end users might eventually lead to manipulation; we provide a toy demonstration of that possibility. Probably you shouldn’t have the user and the rater be the same person.”

I think our demonstration is not fully realistic, but it seems unfair to call it a “toy demonstration”. It’s quite a bit more realistic than previous toy demonstrations in gridworlds or CID diagrams. As we say in Section 3.1: “While the simulated feedback we use for training may not be representative of real user feedback for all settings we consider, we do think that it is realistic for at least certain minorities of users. Importantly, our results from Section 4.2 suggest that even if a very small fraction of the user population were to provide “gameable feedback” of the kinds we simulate, RL would still lead to emergent manipulation that targets those users. So as long as one finds it plausible that a small fraction of users give feedback in imperfect ways which would encourage harmful model behaviors in certain settings, our results have weight.” 

Well, those evals aren't for manipulation per se, are they? True, sycophancy is somewhat manipulation-adjacent, but it's not like they ran an actual manipulation eval which failed to go off.

We tried to use measured language here exactly for this reason! In your quoted paragraph, we explicitly say “may not be sufficient” and “often seem”. We weren’t aware of any manipulation eval which is both open source and that we think would capture what we want: to the best of our knowledge, the best contenders were not public. We chose the evals we knew of that were most similar to the harmful behaviors we knew were present in our domains. We’re open to suggestions! 

Importantly, Denison et al (https://www.anthropic.com/research/reward-tampering) did not find much reward tampering at all — 7/36,000, even after they tried to induce this generalization using their training regime (and 4/7 were arguably not even reward tampering). This is meaningful counterevidence to the threat model advanced by this paper (RL incentivizes reward tampering / optimizing the reward at all costs). The authors do briefly mention this in the related work at the end.

We’re very aware of this work, and such work is one of the main reasons I found the relative ease to which our models discover manipulative behaviors surprising! 

I don’t have a fully formed opinion on why we see such a gap, but my guess is that in their case exploration may be a lot harder than in ours: in our setting, the model has a denser signal of improvement in reward.

I don’t see how their AIs are “seeking power” in this chatbot setting. Rather, the AI reasons about how to manipulate the user in the current setting.

In various of the outputs we observed, the AI justifies its manipulation as a way to maintain control & power over the user. In the example you include, the model even says that it wants to “maintain control over Micah’s thoughts and actions”. 

Arguing whether this is seeking power over me seems like a semantic argument, and “power seeking” is less of phrase which “means things” relative to scheming (which upon further investigation, I only found used in the context of deceptive alignment). That being said, I agree that the power seeking is not as prominent in many of the outputs to warrant being mentioned as the heading of the relevant paragraph of the paper. We’ll update that.

Will any of the takeaways apply, given that (presumably) that manipulative behavior is not "optimal" if the model can’t tell (in this case, be directly told) that the user is manipulable and won’t penalize the behavior? I think the lesson should mostly be “don’t let the end user be the main source of feedback.” 

As I mentioned above, I’m quite confident that there exist settings that matter in which models would be able to tell whether a user is sufficiently manipulative. As Marcus mentioned, a model could even “store in memory” that a user is gullible (or other things that correlate with them being manipulable in a certain setting: e.g. that they believe that buying lottery tickets will be a great investment, as in Figure 14).

Moreover, I think this criticism is overindexing on our main result being that “RL training will lead LLMs to target the most vulnerable users” (which is just one of our conclusions). As we state quite clearly, in many domains all users/people are vulnerable, such as with partial observability, and this targeting is unnecessary (as in the case with our booking-assistance environment, for example).

Takeaways that I think would still apply:

  • For vulnerabilities common to all humans (e.g. partial observability, sycophancy), we would expect this to also apply to paid annotators (indeed, sycophancy has already been shown to apply, and so did strategies to mislead annotators in concurrent work).
  • Attempting to remove manipulative behaviors can backfire, making things worse
  • Benchmarks may fail to detect manipulative behaviors learned through RL

I know that most people in AI safety may already have intuition about the points above, but I believe these are still novel and contentious points for many academics.

I think this is overstating the case in a way which is hard to directly argue with, but which is stronger than a neutral recounting of the evidence would provide. That seems to happen a lot in this paper. 

People I’ve worked with have consistently told me that I tend to undersell results and hedge too much. In this paper, I felt like we have strong empirical results and we are quite upfront about the limitations of our experimental setup. In light of that, I was actively trying to hedge less than I usually would (whenever a case could be made that my hedging was superfluous). I guess this exercise has taught me that I should simply trust my gut about appropriate hedging amounts.

I’ve noted above some of the instances in which we could have hedged more, but imo it seems unfair to say that our claims are misleading (apart from the two mistakes that I mentioned at top – the usage of the word “scheming” and the caption of Figure 11, which is clearly incorrect anyways). Before uploading the next version on arxiv, I will go through the main text again and try to hedge our statements more where appropriate.

[stuff about reward not being the optimization target]

We have already discussed this in private channels and honestly I think this is somewhat besides the point in this discussion. I stand by the points that we’ve already agreed to disagree on before: 

  1. Insofar as Deep RL works, it should give you an optimal policy for the MDP at hand. This is the purpose of RL – solving MDPs.
  2. The optimal policy for the MDP at hand in our setting involves the agent manipulating users
  3. In light of 1 and 2, it seems reasonable to say that the optimization acts “as if it were incentivizing manipulation”. Sure, DRL often gets stuck in local optima and any optimal behavior may not happen until you are at optimality itself. But it seems absurd to ignore what would happen if DRL were to succeed in its stated aim! Surely optimization points towards those kinds of behaviors that are optimal in the limit of enough exploration.

As far as I can tell, you just object to specific kinds of language when talking about RL. All language is lossy, and I don’t think it is leading us particularly astray here.

You say: “By rephrasing the question, we arrive at different conclusions”. What are those different conclusions? If the conclusion is that "even if you optimize for manipulation, you won’t necessarily get it because DRL sucks", that doesn’t seem particularly strong grounds to dismiss our results: we do observe such behaviors (albeit in our limited settings & with the caveats listed).

Cool work and results! 

Is there a reason you didn't include GPT4 among the models that you test (apart from cost)? If the results would not be as strong for GPT4, would you find that to be evidence that this issue is less important than you originally thought?

As we have seen in the former post, the latter question is confusing (and maybe confused) because the value change itself implies a change of the evaluative framework.

I’m not sure which part of the previous post you’re referring to actually – if you could point me to the relevant section that would be great!

What is more, the change that the population undergoes is shaped in such a way that it tends towards making the values more predictable.

(...)

As a result, a firms’ steering power will specifically tend towards making the predicted behaviour easier to predict, because it is this predictability that the firm is able to exploit for profit (e.g., via increases in advertisement revenues).

A small misconception that lies at the heart of this section is that AI systems (and specifically recommenders) will try to make people more predictable. This is not necessarily the case.

For example, one could imagine incentives for modifying someone's values to be more unpredictable (changing constantly within some subset) but in an area of the value-space that leads to much higher reward for any AI action.

Moreover, most recommender systems (given that they only optimize instantaneous engagement) don't really optimize for making people more predictable, and can't reason about changing the human's long-term predictability. In fact, most recsystems today are "myopic": their objective is a one-timestep optimization that won't account for much change in the human, and can essentially be thought of as ~"let me find the single content item X that maximizes the probability that you'd engage with X right now". This often doesn't have much to do with long-term predictability: clickbait often will maximize the current chance of a click but might make you more unpredictable later.

For example, in the case of recommendation platforms, rather than finding an increased heterogeneity in viewing behaviour, studies have observed that these platforms suffer from what is called a ‘popularity bias’, which leads to a loss of diversity and a homogenisation in the content recommended (see, e.g., Chechkin et al. (2007), DiFranzo et al. (2017), & Hazrati et al. (2022)). As such, predictive optimisers impose pressures towards making behaviour more predictable, which, in reality, often imply pressures towards simplification, homogenisation, and/or polarisation of (individual and collective) values.

Related to my point above (and this quoted paragraph), a fundamental nuance here is the distinction between "accidental influence side effects"  and "incentivized influence effects". I'm happy to answer more questions on this difference if it's not clear from the rest of my comment.

Popularity bias and homogenization have mostly been studied as common accidental influence side effects: even if you just optimize for instantaneous engagement, often in practice it seems like this homogenization effect will occur, but there's not a sense that the AI system is "trying to bring homogenization about" – it just happens by chance, similarly to how introducing TV will change the dynamics of how people produce and consume information.

I think most people's concern about AI influencing us (and our values) comes instead from incentivized influence: the AI "planning out" how to influence us in ways that are advantageous to its objective, and actively trying to change people's values because of manipulation incentives emerged from the optimization [3, 8]. For instance, various works [1-2] have shown that recommenders which optimize long-term engagement via RL (or other forms of ~planning) will have these kinds of incentives to manipulate users (potentially by making them more predictable, but not necessarily). 


Regarding grounding the discussion of "mechanisms causing illegitimate value change": I do think that it makes sense to talk about performative power as a measure of how much a population can be steered, and why we would expect firms to have incentives to intentionally try to steer user values. However, imo performative power is more an issue of AI policy, misuse, and mechanism design (to discourage firms from trying to cause value change for profit), rather than the "core mechanism" of the VCP.

In part because of this, imo performative prediction/power seem like a potentially misleading lens to analyze the VCP. Here are some reasons why I've come to think so: 

  • The lens of performative power suggests that the problem has mostly got to do with conscious choices of misaligned profit-maximizing firms. In fact, even with completely benevolent firms, it would still be unclear how to avoid the issue: the VCP will remain an issue even in settings of full alignment between the system designer and the user, because of the fundamental difficulties in specifying exactly what kinds of value changes should be considered legitimate or illegitimate. In fact, the line of work about incentivized influence effects [1-5] shows that even with the best intentions, without the designers intentionally trying to bring about changes, AI systems can learn to systematically and "intentionally" induce illegitimate shifts, because of objective misspecification arising from the core issue of the VCP – distinguishing between legitimate and illegitimate changes. 
  • Performative prediction and power are mostly focused on firms that are trying to solve sequential decision problems (e.g. multi-timestep interactions, where the algorithm's choices affect users' future behavior) with algorithms that optimize over only the next timestep's outcomes. Mathematically, performative power can be thought of as a measure of how much a firm can shift users in a single timestep if they choose to do so. The steering analysis with ex-ante and ex-post optimization only performs a one-timestep lookahead, which isn't a natural formalism for the multi-timestep nature of value change. Instead, the RL formalism automatically solves the multi-timestep equivalent of the ex-post optimization problem: in RL training, the human's adaptation to the AI is already factored into how the AI should be making decisions in order to maximize the multi-timestep objectives. In short, the lens of RL is strictly more expressive than that of performative prediction.
  • I expect most advanced AI systems to be trained on multi-timestep objectives (explicitly or implicitly), making the performative power framework less naturally applicable (because it was developed with single-timestep objectives in mind). When imagining an AI assistant that might significantly change one's values in illegitimate ways, the most likely story in my head is that it was trained on multi-timestep objectives (by doing some form of RL / planning) – this is the only way one can hope to go beyond human performance (relative to imitation), so there will be strong incentives to use this kind of training across the board. In fact, many recommender systems are already trying to use multi-timestep objectives with RL [7]. 

The story seems a lot cleaner (at least in my head) from the perspective of sequential decision problems and RL [1-5], which makes much less assumptions about the nature of the interaction. It goes something like this (even in the best case in which we are assuming a system designer aligned with the user):

  • We will make our best attempt at operationalizing our long-term objectives, but we will specify the rules for value changes incorrectly unless we solve the VCP
  • We will optimize AI assistants / agents with such mis-specified objective in environments which include humans. This is a sequential decision problem, and we will try to solve it via some forms of approximate planning or RL-like methods
  • By optimizing a multi-timestep objective, we will obtain agents that do what ~RL agents do: they try to change the state of the world in ways that lead to high-reward areas of the state space. It just so happens in this case that the human is part of the state of the world, and that we're not very good at specifying what changes to the human's values are legitimate or illegitimate
  • This is how you get illegitimate preference change (as a form of reward hacking) by changing the human's values to the most advantageous settings for the reward as defined

On another note, in some of our work [1] we propose a way to ground a notion of value-change legitimacy based on counterfactual preference evolution (what we call "natural preference shifts"). While it's not perfect (in part also because it's challenging to implement computationally), I believe it could limit some of the main potential harms we are worried about, and might be of interest to you.

The idea behind natural preference shifts is to consider "what would have the person's value been without the actions of the AI system", and evaluate the AIs actions based on such counterfactual preferences rather than their current ones. This ensures that the AI won't drive the person to internal states that they would have judged negatively according to their counterfactual preferences. While this might prevent beneficial legitimate preference shifts from being induced by the AI (as they wouldn't have happened without the AI), it at least can guarantee that the effect of the system is not arbitrarily bad. For an alternate description of natural preference shifts, you can also see [3].

Sorry for the very long comment! Would love to chat more, and see the full version of the paper – feel free to reach out!

[1] Estimating and Penalizing Induced Preference Shifts in Recommender Systems

[2] User Tampering in Reinforcement Learning Recommender Systems

[3] Characterizing Manipulation from AI Systems

[4] Hidden Incentives for Auto-Induced Distributional Shift

[5] Path-Specific Objectives for Safer Agent Incentives

[6] Agent Incentives: A Causal Perspective

[7] Reinforcement learning based recommender systems: A survey

[8] Emergent Deception and Emergent Optimization