Richard Ngo

Formerly alignment and governance researcher at DeepMind and OpenAI. Now independent.

Sequences

Understanding systematization
Shaping safer goals
AGI safety from first principles

Wiki Contributions

Comments

Sorted by

Cool, ty for (characteristically) thoughtful engagement.

I am still intuitively skeptical about a bunch of your numbers but now it's the sort of feeling which I would also have if you were just reasoning more clearly than me about this stuff (that is, people who reason more clearly tend to be able to notice ways that interventions could be surprisingly high-leverage in confusing domains).

1. Yepp, seems reasonable. Though FYI I think of this less as some special meta argument, and more as the common-sense correction that almost everyone implicitly does when giving credences, and rationalists do less than most. (It's a step towards applying outside view, though not fully "outside view".)

2. Yepp, agreed, though I think the common-sense connotations of "if this became" or "this would have a big effect" are causal, especially in the context where we're talking to the actors who are involved in making that change. (E.g. the non-causal interpretation of your claim feels somewhat analogous to if I said to you "I'll be more optimistic about your health if you take these pills", and so you take the pills, and then I say "well the pills do nothing but now I'm more optimistic, because you're the sort of person who's willing to listen to recommendations". True, but it also undermines people's willingness/incentive to listen to my claims about what would make the world better.)

3. Here are ten that affect AI risk as much one way or the other:

  1. The US government "waking up" a couple of years earlier or later (one operationalization: AISIs existing or not right now).
  2. The literal biggest names in the field of AI becoming focused on AI risk.
  3. The fact that Anthropic managed to become a leading lab (and, relatedly, the fact that Meta and other highly safety-skeptical players are still behind).
  4. Trump winning the election.
  5. Elon doing all his Elon stuff (like founding x.AI, getting involved with Trump, etc).
  6. The importance of transparency about frontier capabilities (I think of this one as more of a logical update that I know you've made).
  7. o1-style reasoning as the next big breakthrough.
  8. Takeoff speeds (whatever updates you've made in the last three years).
  9. China's trajectory of AI capabilities (whatever updates you've made about that in last 3 years).
  10. China's probability of invading Taiwain (whatever updates you've made about that in last 3 years).

And then I think in 3 years we'll be able to publish a similar list of stuff that mostly we just hadn't predicted or thought about before now.

I expect you'll dispute a few of these; happy to concede the ones that are specifically about your updates if you disagree (unless you agree that you will probably update a bunch on them in the next 3 years).

But IMO the easiest way for safety cases to become the industry-standard thing is for AISI (or internal safety factions) to specifically demand it, and then the labs produce it, but kinda begrudgingly, and they don't really take them seriously internally (or are literally not the sort of organizations that are capable of taking them seriously internally—e.g. due to too much bureaucracy). And that seems very much like the sort of change that's comparable to or smaller than the things above.

I think I would be more sympathetic to your view if the claim were "if AI labs really reoriented themselves to take these AI safety cases as seriously as they take, say, being in the lead or making profit". That would probably halve my P(doom), it's just a very very strong criterion.

We have discussed this dynamic before but just for the record:

I think that if it became industry-standard practice for AGI corporations to write, publish, and regularly update (actual instead of just hypothetical) safety cases at at this level of rigor and detail, my p(doom) would cut in half.

This is IMO not the type of change that should be able to cut someone's P(doom) in half. There are so many different factors that are of this size and importance or bigger (including many that people simply have not thought of yet) such that, if this change could halve your P(doom), then your P(doom) should be oscillating wildly all the time.

I flag this as an example of prioritizing inside-view considerations too strongly in forecasts. I think this is the sort of problem that arises when you "take bayesianism too seriously", which is one of the reasons why I wrote my recent post on why I'm not a bayesian (and also my earlier post on Knightian uncertainty).

For context: our previous discussions about this related to Daniel's claim that appointing one specific person to one specific important job could change his P(doom) by double digit percentage points. I similarly think this is not the type of consideration that should be able to swing people's P(doom) that much (except maybe changing the US or Chinese leaders, but we weren't talking about those).

Lastly, since this is a somewhat critical comment, I should flag that I really appreciate and admire Daniel's forecasting, have learned a lot from him, and think he's generally a great guy. The epistemology disagreements just disproportionately bug me.

The mistakes can (somewhat) be expressed in the language of Bayesian rationalism by doing two things:

  1. Talking about partial hypotheses rather than full hypotheses. You can't have a prior over partial hypotheses, because several of them can be true at once (though you can still assign them credences and update those credences according to evidence).
  2. Talking about models with degrees of truth rather than just hypotheses with degrees of likelihood. E.g. when using a binary conception of truth, general relativity is definitely false because it's inconsistent with quantum phenomena. Nevertheless, we want to say that it's very close to the truth. In general this is more of an ML approach to epistemology (we want a set of models with low combined loss on the ground truth).

Scott Garrabrant just convinced me that my notion of conservatism was conflating two things:

  1. Obligations to (slash constraints imposed by) the interests of existing agents.
  2. The assumption that large agents would grow in a bottom-up way (e.g. by merging smaller agents) rather than in a top-down way (e.g. by spinning up new subagents).

I mainly intend conservatism to mean the former.

Whose work is relevant, according to you?

If you truly aren't trying to make AGI, and you truly aren't trying to align AGI, and instead are just purely intrinsically interested in how neural networks work (perhaps you are an academic?) ...great! That's neither capabilities nor alignment research afaict, but basic science.

Consider Chris Olah, who I think has done more than almost anyone else to benefit alignment. It would be very odd if we had a definition of alignment research where you could read all of Chris's interpretability work and still not know whether or not he's an "alignment researcher". On your definition, when I read a paper by a researcher I haven't heard of, I don't know anything about whether it's alignment research or not until I stalk them on facebook and find out how socially proximal they are to the AI safety community. That doesn't seem great.

Back to Chris. Because I've talked to Chris and read other stuff by him, I'm confident that he does care about alignment. But I still don't know whether his actual motivations are more like 10% intrinsic interest in how neural networks work and 90% in alignment, or vice versa, or anything in between. (It's probably not even a meaningful thing to measure.) It does seem likely to me that the ratio of how much intrinsic interest he has in how neural networks work, to how much he cares about alignment, is significantly higher than that of most alignment researchers, and I don't think that's a coincidence—based on the history of science (Darwin, Newton, etc) intrinsic interest in a topic seems like one of the best predictors of actually making the most important breakthroughs.

In other words: I think your model of what produces more useful research from an alignment perspective overprioritizes towards first-order effects (if people care more they'll do more relevant work) and ignores the second-order effects that IMO are more important (1. Great breakthroughs seem, historically, to be primarily motivated by intrinsic interest; and 2. Creating research communities that are gatekept by people's beliefs/motivations/ideologies is corrosive, and leads to political factionalism + ingroupiness rather than truth-seeking.)

I'm not primarily trying to judge people, I'm trying to exhort people

Well, there are a lot of grants given out for alignment research. Under your definition, those grants would only be given to people who express the right shibboleths.

I also think that the best exhortation of researchers mostly looks like nerdsniping them, and the way to do that is to build a research community that is genuinely very interested in a certain set of (relatively object-level) topics. I'd much rather an interpretability team hire someone who's intrinsically fascinated by neural networks (but doesn't think much about alignment) than someone who deeply cares about making AI go well (but doesn't find neural nets very interesting). But any step in the pipeline that prioritizes "alignment researchers" (like: who gets invited to alignment workshops, who gets alignment funding or career coaching, who gets mentorship, etc) will prioritize the latter over the former if they're using your definition.

What if your research goal is "I'd like to understand how neural networks work?" This is not research primarily about how to make AIs aligned. We tend to hypothesize, as a community, that it will help with alignment more than it helps with capabilities. But that's not an inherent part of the research goal for many interpretability researchers.

(Same for "I'd like to understand how agency works", which is a big motivation for many agent foundations researchers.)

Conversely, what if your research goal is "I'm going to design a training run that will produce a frontier model, so that we can study it to advance alignment research"? Seems odd, but I'd bet that (e.g.) a chunk of Anthropic's scaling team thinks this way. Counts as alignment under your definition, since that's the primary goal of the research.

More generally, I think it's actually a very important component of science that people judge the research itself, not the motivations behind it—since historically scientific breakthroughs have often come from people who were disliked by establishment scientists. A definition that basically boils down to "alignment research is whatever research is done by the people with the right motivations" makes it very easy to prioritize the ingroup. I do think that historically being motivated by alignment has correlated with choosing valuable research directions from an alignment perspective (like mech interp instead of more shallow interp techniques) but I think we can mostly capture that difference by favoring more principled, robust, generalizable research (as per my definitions in the post).

Whereas I don't think it's particularly important that e.g. people switch from scalable oversight to agent foundations research. (In fact it might even be harmful lol)

I agree. I'll add a note in the post saying that the point you end up on the alignment spectrum should also account for feasibility of the research direction.

Though note that we can interpret your definition as endorsing this too: if you really hate the idea of making AIs more capable, then that might motivate you to switch from scalable oversight to agent foundations, since scalable oversight will likely be more useful for capabilities progress.

Fair point. I've now removed that section from the post (and also, unrelatedly, renamed the post).

I was trying to make a point about people wanting to ensure that AI in general (not just current models) is "aligned", but in hindsight I think people usually talk about alignment with human values or similar. I have some qualms about that but will discuss in a different post.

Nice post. I'm excited about the bargaining interpretation of UDT.

However, if we think of our probability for the coin-flip as the result of bargaining, it makes sense that it might be sensitive to size. The negotiation which was willing to trade $100 from one branch to get $10,000 in another branch need not be equally willing to perform that trade arbitrarily many times.

Given this, is there any reason to focus on iterated counterfactual mugging, as opposed to just counterfactual muggings with higher stakes?

It seems like iteration is maybe related to learning. That doesn't make a difference for counterfactual mugging, because you'll learn nothing relevant over time.

For counterlogical muggings about the Nth digit of pi, we can imagine a scenario where you would have learned the Nth digit of pi after 1000 days, and therefore wouldn't have paid if Omega had first offered you the deal on the 1001st day. But now it's confounded by the fact that he already told you about it... So maybe there's something here where you stop taking the deal on the day when you would have found out the Nth digit of pi if Omega hadn't appeared?

Load More