That's a very good point, CounterBlunder, and I should have highlighted that as well. It is definitely fairly common for cognitive science researchers to never work with or make use of ACT-R. It's a sub-community within the cognitive science community. The research program has continued past the 90's, and there's probably around 100 or so researchers actively using it on a regular basis, but the cognitive science community is much larger than that, so your experience is pretty common.
As for whether ACT-R is "actually amazing and people ha...
Hi Vanessa, hmm, very good question. One possibility is to point you at the ACT-R reference manual http://act-r.psy.cmu.edu/actr7/reference-manual.pdf but that's a ginormous document that also spends lots of time just talking about implementation details, because the reference ACT-R implementation is in Lisp (yes, ACT-R has been around that long!)
So, another option would be this older paper of mine, where I attempted to rewrite ACT-R in Python, and so the paper goes through the math that had to be reimplemented. http://act-r.psy.cmu.edu/wordpre...
Yes, that Tenison paper is a great example of arithmetic modelling in ACT-R, and especially connecting it to the modern fMRI approach for validation! For an example of the other sorts of math modelling that's more psychology-experiment-based, this paper gives some of the low-level detail about how such a model would work, and maps it onto human errors:
- "Toward a Dynamic Model of Early Algebra Acquisition" https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.5754&rep=rep1&type=pdf
(that work was expanded on a few times, and led...
That sounds right to me. It gives what types of information are processed in each area, and it gives a very explicit statement about exactly what processing each module performs.
So I look at ACT-R as sort of a minimal set of modules, where if I could figure out how to get neurons to implement the calculations ACT-R specifies in those modules (or something close to them), then I'd have a neural system that could do a very wide variety of psychology-experiment-type-tasks. As far as current progress goes, I'd say we have a pretty decent way to get neurons to implement the core Production system, and the Buffers surrounding it, but much less of a clear story for the other modules.
As someone who can maybe call themselves an ACT-R expert, I think the main thing I'd say about the intentional module being "not identified" is that we don't have any fMRI data showing activity in any particular part of the brain being correlated to the use of the intentional module in various models. For all of the other parts that have brain areas identified, there's pretty decent data showing that correlation with activity in particular brain areas. And also, for each of those other areas there's pretty good arguments that those brain areas ...
The idea of the physical brain turning out to be similar to ACT-R after the code had been written based on high level timing data and so on... seems like strong support to me. Nice! Real science! Predicting stuff in advance by accident! <3
My memory from exploring this in the past is that I ran into some research with "math problem solving behavior" with human millisecond timing for answering various math questions that might use different methods... Googling now, this Tenison et al ACT-R arithmetic paper might be similar, or related?
With you being an ex...
Hello everyone, I'm a long-time lurker here, but this is my first time commenting. I'm a researcher at the National Research Council of Canada, and a big part of my research has been about taking ACT-R and figuring out how it could be implemented in the brain: http://terrystewart.ca/
I very much agree with the summary in the main post here. ACT-R is the best current model if you are trying to match human experimental data, including things like accuracy and reaction times. And it's been applied to a much wider variety of tasks than a...
I agree that there isn't an overarching theory at the level of specificity of ACT-R that covers all the different aspects of the mind that cognitive science researchers wish it would cover. And so yes, I can see cognitive scientists saying that there is no such theory, or (more accurately) saying that even though ACT-R is the best-validated one, it's not validated on the particular types of tasks that they're interested in, so therefore they can ignore it.
However, I do think that there's enough of a consensus about some aspects of ACT-R (and o... (read more)