A group is an abstraction of a collection of symmetries of an object. The collection of symmetries of a triangle (rotating by or degrees and flipping), rearrangements of a collection of objects (permutations), or rotations of a sphere, are all examples of groups. A group abstracts from these examples by forgetting what the symmetries are symmetries of, and only considers how symmetries behave.
A group is a pair where:
1) The set X is the collection of abstract symmetries that this group represents. "Abstract," because these elements aren't necessarily symmetries of something, but almost all examples will be.
2) The operation is the abstract composition operation.
3) The axiom of closure is redundant, since is defined as a function , but it is useful to emphasize this, as sometimes one can forget to check that a given subsets of symmetries of an object is closed under composition.
4) The axiom of identity says that there is an element in that is a do-nothing symmetry: If you apply to and , then simply returns . The identity is unique: Given two elements and that satisfy axiom 2, we have Thus, we can speak of "the identity" of . This justifies the use of in the axiom of inversion: axioms 1 through 3 ensure that exists and is unique, so we can reference it in axiom 4.
is often written or , because is often treated as an analog of multiplication on the set , and is the multiplicative identity. (Sometimes, e.g. in the case of rings, is treated as an analog of addition, in which case the identity is often written or .)
5) The axiom of inverses says that for every element in , there is some other element that treats like the opposite of , in the sense that and vice versa. The inverse of is usually written , or sometimes in cases where is analogous to addition.
6) The axiom of associativity says that \bullet behaves like composition of functions. When composing a bunch of functions, it doesn't matter what order the individual compositions are computed in. When composing , , and , we can compute , and then compute , or we can compute and then compute , and we will get the same result.
Equivalently, a group is a category with exactly one object, which satisfies "every arrow has an inverse"; the arrows are viewed as elements of the group. This justifies the intuition that groups are collections of symmetries. The object of this category can be thought of an abstract object that the isomorphisms are symmetries of. A functor from this category into the category of sets associates this object with a set, and each of the morphisms a permutation of that set.
The most familiar example of a group is perhaps , the integers under addition. To see that it satisfies the group axioms, note that:
For more examples, see the examples page.
Given a group , we say " forms a group under ." is called the underlying set of , and is called the group operation.
is usually abbreviated .
is generally allowed to substitute for when discussing the group. For example, we say that the elements are "in ," and sometimes write "" or talk about the "elements of ."
The order of a group, written , is the size of its underlying set: If has nine elements, then and we say that has order nine.
Groups are a ubiquitous and useful algebraic structure. Whenever it makes sense to talk about symmetries of a mathematical object, or physical system, groups pop up. For a discussion of group theory and its various applications, refer to the group theory page.
A group is a monoid with inverses, and an associative loop. For more on how groups relate to other algebraic structures, refer to the tree of algebraic structures.