AI safety researchers might be allocated too heavily to Anthropic compared to Google Deepmind
Some considerations:
Some possible counterpoints:
ANT has a stronger safety culture, and so it is a more pleasant experience to work at ANT for the average safety researcher. This suggests that there might be a systematic bias towards ANT that pulls away from the "optimal allocation".
I think this depends on whether you think AI safety at a lab is more of an O-ring process or a swiss-cheese process. Also, if you think it's more of an O-ring process, you might be generally less excited about working at a scaling lab.
I think I disagree with your model of importance. If your goal is the make a sum of numbers small, then you want to focus your efforts where the derivative is lowest (highest? signs are hard), not where the absolute magnitude is highest.
The "epsilon fallacy" can be committed in both directions: both in that any negative dervative is worth working on, and that any extremely large number is worth taking a chance to try to improve.
I also seperately think that "bottleneck" is not generally a good term to apply to a complex project with high amounts of technica...
My vague plan along these lines is to attempt as hard as possible to defer all philosophically confusing questions to the "long reflection", and to use AI control as a tool to help produce AIs that can help preserve long term option value (including philosophical option value) as best as possible.
I seperately have hope we can solve "the entire problem" at some point, e.g. through ARC's agenda (which I spend most of my time trying to derisk and advance).
I agree it is better work on bottlenecks than non-bottlenecks. I have high uncertainty about where such bottlenecks will be, and I think sufficiently low amounts of work have gone into "control" that it's obviously worth investing more, because e.g. I think it'll let us get more data on where bottlenecks are.
Alignment researchers should think hard about switching to working on AI Control
I think Redwood Research’s recent work on AI control really “hits it out of the park”, and they have identified a tractable and neglected intervention that can make AI go a lot better. Obviously we should shift labor until the marginal unit of research in either area decreases P(doom) by the same amount. I think that implies lots of alignment researchers should shift to AI control type work, and would naively guess that the equilibrium is close to 50/50 across people who a...
quick analogy: if the sum of a bunch of numbers is large, there doesn’t need to be any individual number that is large; similarly, if the consequences of a sequence of actions results in a large change, no individual action needs to be “pivotal”
This feels like a pretty central cruxy point - and not just for the relevance of the pivotal act framing specifically. I think it's underlying a whole difference of worldview or problem-solving approach.
A couple other points in a similar direction:
I really think if you want to tell a story of AI Control work being good (especially compared to working on preventing AGI from being built in the first place), the important and difficult part is figuring out how to actually use these more powerful AI systems to either achieve some kind of global moratorium, or make unprecedented progress on the hard parts of the AI Alignment problem.
When I see most people start thinking about control, I rarely see them interface with either of these two things, and honestly, I mostly see them come up with cool addi...
Better control solutions make AI more economically useful, which speeds up the AI race and makes it even harder to do an AI pause.
When we have controlled unaligned AIs doing economically useful work, they probably won't be very useful for solving alignment. Alignment will still be philosophically confusing, and it will be hard to trust the alignment work done by such AIs. Such AIs can help solve some parts of alignment problems, parts that are easy to verify, but alignment as a whole will still be bottle-necked on philosophically confusing, hard to verify ...
The intelligence explosion might happen with less-fully-AGI AIs, who will also be doing some alignment work on the side. It’s important for them to not escape and do other bad stuff until they’ve solve alignment. We can give ourselves more time to use smart AIs to help with alignment if we have better AI control.
Well, this would be the lone crux. The rest of the stuff you wrote is about non-exploding AI, right? And is therefore irrelevant to the thing about everyone dying, except insofar as controlled non-exploding AI can help prevent uncontrolled exploding AI from killing everyone?
I directionally agree with this (and think it's good to write about this more, strongly upvoted!)
For clarity, I would distinguish between two control-related ideas more explicitly when talking about how much work should go into what area:
I th...
Yes I agree with what you have written, and do think it’s overall not that likely that everything pans out as hoped. We do also have other hopes for how this general picture can still cohere if the specific path doesn’t work out, eg we’re open to learning some stuff empirically and adding an “algorithmic cherry on top” to produce the estimate.
The literature review is very strange to me. Where is the section on certified robustness against epsilon-ball adversarial examples? The techniques used in that literature (e.g. interval propagation) are nearly identical to what you discuss here.
I was meaning to include such a section, but forgot :). Perhaps I will edit it in. I think such work is qualitatively similar to what we're trying to do, but that the key difference is that we're interested in "best guess" estimates, as opposed to formally verified-to-be-correct estimates (mostly because we don'...
yes, you would need the catastrophe detector to be reasonably robust. Although I think it's fine if e.g. you have at least 1/million chance of catching any particular catastrophe.
I think there is a gap, but that the gap is probably not that bad (for "worst case" tail risk estimation). That is maybe because I think being able to do estimation through a single forward pass is likely already to be very hard, and to require being able to do "abstractions" over the concepts being manipulated by the forward pass. CoT seems like it will require vaguely similar struction of a qualitatively similar kind.
I think catastrophe detectors in practice will be composed of neural networks interacting with other stuff, like scientific literature, python, etc.
With respect to the stuff quoted, I think all but "doing experiments" can be done with a neural net doing chain of thought (although not making claims about quality).
I think we're trying to solve a different problem than trusted monitoring, but I'm not that knowledgeable about what issues trusted monitoring is trying to solve. The main thing that I don't think you can do with monitoring is producing a model tha...
if you train on (x, f(x)) pairs, and you ask it to predict f(x') on some novel input x', and also to write down what it thinks f is, do you know if these answers will be consistent? For instance, the model could get f wrong, and also give the wrong prediction for f(x), but it would be interesting if the prediction for f(x) was "connected" to it's sense of what f was.
Here are some things I think you can do:
Train a model to be really dumb unless I prepend a random secret string. The goverment doesn't have this string, so I'll be able to predict my model and pass their eval. Some precedent in: https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal
I can predict a single matrix multiply just by memorizing the weights, and I can predict ReLU, and I'm allowed to use helper AIs.
I just train really really hard on imitating 1 particular individual, then have them just say whatever first comes to mind.
My shitty guess is that you're basically right that giving a finite set of programs infinite money can sort of be substituted for the theorem prover. One issue is that logical inductor traders have to be continuous, so you have to give an infinite family of programs "infinite money" (or just an increasing unbounded amount as eps -> 0)
I think if these axioms were inconsistent, then there wouldn't be a price at which no trades happen so the market would fail. Alternatively, if you wanted the infinities to cancel, then the market prices could just be whatever they wanted (b/c you would get infinite buys and sells for any price in (0, 1)).
humans, despite being fully general, have vastly varying ability to do various tasks, e.g. they're much better at climbing mountains than playing GO it seems. Humans also routinely construct entirely technology bases to enable them to do tasks that they cannot do themselves. This is, in some sense, a core human economic activity: the construction of artifacts that can do tasks better/faster/more efficiently than humans can do themselves. It seems like by default, you should expect a similar dynamic with "fully general" AIs. That is, AIs trained to do semic...
Not literally the best, but retargetable algorithms are on the far end of the spectrum of "fully specialized" to "fully general", and I expect most tasks we train AIs to do to have heuristics that enable solving the tasks much faster than "fully general" algorithms, so there's decently strong pressure to be towards the "specialized" side.
I also think that heuristics are going to be closer to multiplicative speed ups than additive, so it's going to be closer to "general algorithms just can't compete" than "it's just a little worse". E.g. random search is te...
One of the main reasons I expect this to not work is because optimization algorithms that are the best at optimizing some objective given a fixed compute budget seem like they basically can't be generally-retargetable. E.g. if you consider something like stockfish, it's a combination of search (which is retargetable), sped up by a series of very specialized heuristics that only work for winning. If you wanted to retarget stockfish to "maximize the max number of pawns you ever have" you had, you would not be able to use [specialized for telling whether a mo...
Flagging that I don't think your description of what ELK is trying to do is that accurate, e.g. we explicitly don't think that you can rely on using ELK to ask your AI if it's being deceptive, because it might just not know. In general, we're currently quite comfortable with not understanding a lot of what our AI is "thinking", as long as we can get answers to a particular set of "narrow" questions we think is sufficient to determine how good the consequences of an action are. More in “Narrow” elicitation and why it might be sufficient.
Separately, I think ...
From my perspective, ELK is currently very much "A problem we don't know how to solve, where we think rapid progress is being made (as we're still building out the example-counterexample graph, and are optimistic that we'll find an example without counterexamples)" There's some question of what "rapid" means, but I think we're on track for what we wrote in the ELK doc: "we're optimistic that within a year we will have made significant progress either towards a solution or towards a clear sense of why the problem is hard."
We've spent ~9 months on the proble...
The high-level reason is that the 1e12N model is not that much better at prediction than the 2N model. You can correct for most of the correlation even with only a vague guess at how different the AI and human probabilities are, and most AI and human probabilities aren't going to be that different in a way that produces a correlation the human finds suspicious. I think that the largest correlations are going to be produced by the places the AI and the human have the biggest differences in probabilities, which are likely also going to be the places where th...
I agree that i does slightly worse than t on consistency checks, but i also does better on other regularizers you're (maybe implicitly) using like speed/simplicity, so as long as i doesn't do too much worse it'll still beat out the direct translator.
One possible thing you might try is some sort of lexicographic ordering of regularization losses. I think this rapidly runs into other issues with consistency checks, like the fact that the human is going to be systematically wrong about some correlations, so i potentially is more consistent than t.
I feel mostly confused by the way that things are being framed. ELK is about the human asking for various poly-sized fragments and the model reporting what those actually were instead of inventing something else. The model should accurately report all poly-sized fragments the human knows how to ask for.
Like the thing that seems weird to me here is that you can't simultaneously require that the elicited knowledge be 'relevant' and 'comprehensible' and also cover these sorts of obfuscated debate like scenarios.
I don't know what you mean by "relevant" or ...
I don’t think I understand your distinction between obfuscated and non-obfuscated knowledge. I generally think of non-obfuscated knowledge as NP or PSPACE. The human judgement of a situation might only theoretically require a poly sized fragment of a exp sized computation, but there’s no poly sized proof that this poly sized fragment is the correct fragment, and there are different poly sized fragments for which the human will evaluate differently, so I think of ELK as trying to elicit obfuscated knowledge.
We generally assume that we can construct questions sufficiently well that there's only one unambiguous interpretation. We also generally assume that the predictor "knows" which world it's in because it can predict how humans would respond to hypothetical questions about various situations involving diamonds and sensors and that humans would say in theory Q1 and Q2 could be different.
More concretely, our standard for judging proposals is exhibiting an unambiguous failure. If it was plausible you asked the wrong question, or the AI didn't know what you mean...
I think we would be trying to elicit obfuscated knowledge in ELK. In our examples, you can imagine that the predictor's Bayes net works "just because", so an argument that is convincing to a human for why the diamond in the room has to be arguing that the Bayes net is a good explanation of reality + arguing that it implies the diamond is in the room, which is the sort of "obfuscated" knowledge that debate can't really handle.
Does this mean that the method needs to work for ~arbitrary architectures, and that the solution must use substantially the same architecture as the original?
Yes, approximately. If you can do it for only e.g. transformers, but not other things, that would be interesting.
Does this mean that it must be able to deal with a broad variety of questions, so that we cannot simply sit down and think about how to optimize the model for getting a single question (e.g. "Where is the diamond?") right?
Yes, approximately. Thinking about how to get one question rig...
Yes. Section Strategy: have a human operate the SmartVault and ask them what happened describes what I think you're asking about.
A different way of phrasing Ajeya's response, which I think is roughly accurate, is that if you have a reporter that gives consistent answers to questions, you've learned a fact about the predictor, namely "the predictor was such that when it was paired with this reporter it gave consistent answers to questions." if there were 8 predictor for which this fact was true then "it's the [7th] predictor such that when it was paired with this reporter it gave consistent answers to questions" is enough information to uniquely determine the reporter, e.g. the previ...
There is a distinction between the way that the predictor is reasoning and the way that the reporter works. Generally, we imagine that that the predictor is trained the same way the "unaligned benchmark" we're trying to compare to is trained, and the reporter is the thing that we add onto that to "align" it (perhaps by only training another head on the model, perhaps by finetuning). Hopefully, the cost of training the reporter is small compared to the cost of the predictor (maybe like 10% or something)
In this frame, doing anything to train the way the pred...
I think that problem 1 and problem 2 as you describe them are potentially talking about the same phenomenon. I'm not sure I'm understanding correctly, but I think I would make the following claims:
My point is either that:
Thanks for your proposal! I'm not sure I understand how the "human is happy with experiment" part is supposed to work. Here are some thoughts:
We don't think that real humans are likely to be using Bayes nets to model the world. We make this assumption for much the same reasons that we assume models use Bayes nets, namely that it's a test case where we have a good sense of what we want a solution to ELK to look like. We think the arguments given in the report will basically extend to more realistic models of how humans reason (or rather, we aren't aware of a concrete model of how humans reason for which the arguments don't apply).
If you think there's a specific part of the report where the human Bayes net assumption seems crucial, I'd be happy to try to give a more general form of the argument in question.
The way that you would think about NN anchors in my model (caveat that this isn't my whole model):
My model is something like:
I was intending to warn about the possibility of future perception of corruption, e.g. after a non-existential AI catastrophe. I do not think anyone currently working at safety teams is percieved as that "corrupted", although I do think there is mild negative sentiment among some online communities (some parts of twitter, reddit, etc.).