Mark Xu

I do alignment research at the Alignment Research Center. Learn more about me at markxu.com/about

Sequences

Intermittent Distllations

Wiki Contributions

Comments

Sorted by
Mark Xu20

I was intending to warn about the possibility of future perception of corruption, e.g. after a non-existential AI catastrophe. I do not think anyone currently working at safety teams is percieved as that "corrupted", although I do think there is mild negative sentiment among some online communities (some parts of twitter, reddit, etc.).

Mark Xu20

Basically (2), very small amounts of (1) (perhaps qualitatively similar to the amount of (1) you would apply to e.g. people joining US AISI or UK AISI)

Mark Xu4024

AI safety researchers might be allocated too heavily to Anthropic compared to Google Deepmind

Some considerations:

  • Safety researchers should want Google Deepmind (GDM) to have a robust and flourishing safety department. It seems plausible that GDM will be able to create "the smartest" models: they have lots of talent, and own lots of computers. (see e.g. https://epochai.org/data/notable-ai-models#computing-capacity)
  • Anthropic (ANT) might run into trouble in the future due to not owning their own computers, e.g. if Amazon (or where ever they're renting their computers from) starts their own internal scaling competitor, and decides to stop renting out most of their compute.
  • ANT has a stronger safety culture, and so it is a more pleasant experience to work at ANT for the average safety researcher. This suggests that there might be a systematic bias towards ANT that pulls away from the "optimal allocation".
  • GDM only recently started a bay area based safety research team/lab (with members like Alex Turner). So if people had previously decided to work for ANT based on location, they now have the opportunity to work for GDM without relocating.
  • I've heard that many safety researchers join ANT without considering working for GDM, which seems like an error, although I don't have 1st hand evidence for this being true.
  • ANT vs GDM is probably a less important consideration than “scaling lab” (ANT, OAI, GMD, XAI, etc.) vs “non scaling lab” (USAISIUKAISIRedwoodARCPalisadeMETRMATS, etc. (so many...)). I would advise people to think hard about how joining a scaling lab might inhibit their future careers by e.g. creating a perception they are “corrupted” [edit: I mean viewed as corrupted  by the broader world in situations where e.g. there is a non-existential AI disaster or there is rising dislike of the way AI is being handled by coorperations more broadly, e.g. similar to how working for an oil company might result in various climate people thinking you're corrupted, even if you were trying to get the oil company to reduce emissions, etc. I personally do not think GDM or ANT safety people are "corrupted"] (in addition to strengthening them, which I expect people to spend more time thinking about by default).
  • Because ANT has a stronger safety culture, doing safety at GDM involve more politics and navigating around buerearcracy, and thus might be less productive. This consideration applies most if you think the impact of your work is mostly through the object level research you do, which I think is possible but not that plausible. 

(Thanks to Neel Nanda for inspiring this post, and Ryan Greenblatt for comments.)

Mark Xu40

Hiliariously, it seems likely that our disagreement is even more meta, on the question of "how do you know when you have enough information to know", or potentially even higher, e.g. "how much uncertainty should one have given that they think they know" etc.

Mark Xu70

I think I disagree with your model of importance. If your goal is the make a sum of numbers small, then you want to focus your efforts where the derivative is lowest (highest? signs are hard), not where the absolute magnitude is highest.

The "epsilon fallacy" can be committed in both directions: both in that any negative dervative is worth working on, and that any extremely large number is worth taking a chance to try to improve.

I also seperately think that "bottleneck" is not generally a good term to apply to a complex project with high amounts of technical and philosophical uncertainty. The ability to see a "bottleneck" is very valuable should one exist, but I am skeptical of the ability to strongly predict where such bottlnecks will be in advance, and do not think the historical record really supports the ability to find such bottlenecks reliably by "thinking", as opposed to doing a lot of stuff, including trying things and seeing what works. If you have a broad distribution over where a bottleneck might be, then all activities lend value by "derisking" locations for particular bottlenecks if they succeed, and providing more evidence that a bottleneck is in a particular location if it fails. (kinda like: https://en.wikipedia.org/wiki/Swiss_cheese_model) For instance, I think of "deceptive alignment" as a possible way to get pessimal generalization, and thus a proabalistic "bottleneck" to various alignment approaches. But there are other ways things can fail, and so one can still lend value by solving non-deceptive-alignment related problems (although my day job consists of trying to get "benign generalization" our of ML, and thus does infact address that particular bottleneck imo).

I also seperately think that if someone thinks they have identified a bottleneck, they should try to go resolve it as best they can. I think of that as what you (John) is doing, and fully support such activities, although think I am unlikely to join your particular project. I think the questions you are trying to answer are very interesting ones, and the "natural latents" approach seems likely to shed at some light on whats going on with e.g. the ability of agents to communicate at all.

Mark Xu52

My vague plan along these lines is to attempt as hard as possible to defer all philosophically confusing questions to the "long reflection", and to use AI control as a tool to help produce AIs that can help preserve long term option value (including philosophical option value) as best as possible.

I seperately have hope we can solve "the entire problem" at some point, e.g. through ARC's agenda (which I spend most of my time trying to derisk and advance).

Mark Xu43

yep agreed, I have a bunch of vague plans in this direction. I most generally think that AI control is a pretty good tool in the toolbox, and is unlikely to make things much worse but plausibly makes things much better.

Mark Xu63

I agree it is better work on bottlenecks than non-bottlenecks. I have high uncertainty about where such bottlenecks will be, and I think sufficiently low amounts of work have gone into "control" that it's obviously worth investing more, because e.g. I think it'll let us get more data on where bottlenecks are.

Mark Xu6833

Alignment researchers should think hard about switching to working on AI Control

I think Redwood Research’s recent work on AI control really “hits it out of the park”, and they have identified a tractable and neglected intervention that can make AI go a lot better. Obviously we should shift labor until the marginal unit of research in either area decreases P(doom) by the same amount. I think that implies lots of alignment researchers should shift to AI control type work, and would naively guess that the equilibrium is close to 50/50 across people who are reading this post. That means if you’re working on alignment and reading this, I think there’s probably a ~45% chance it would be better for your values if you instead were working on AI control!

For this post, my definitions are roughly:

  • AI alignment is the task of ensuring the AIs “do what you want them to do”
  • AI control is the task of ensuring that if the AIs are not aligned (e.g. don’t always “do what you want” and potentially want to mess with you), then you are still OK and can use them for economically productive tasks (an important one of which is doing more alignment/control research.)

Here are some thoughts, arguments, and analogies (epistemic status: there is no “hidden content”, if you don’t find the literal words I wrote persuasive you shouldn’t update. In particular, just update on the words and don't update about what my words imply about my beliefs.):

  • Everything is in degrees. We can “partially align” some AIs, and things will be better if we can use those AIs for productive tasks, like helping with alignment research. The thing that actually matters is “how aligned are the AIs” + “how aligned to they need to be to use them for stuff”, so we should also focus on the 2nd thing.
  • If you were a hedge fund, and your strategy for preventing people from stealing your data was and starting new hedge fund was “we will make the hedge fund a super fun place to work and interview people carefully to make sure they really care about working for us”, and you also did not do things like “maybe people shouldn’t be able to download all the trading strategies onto a USB stick which we let them take home”, “maybe people should be forced to keep their work computers in the office” and “maybe we should have some people checking if other employees are trying to steal data and make some plans about how to stop them from starting a rival hedge fund if they do”, then all the other hedge funds would think you were an idiot. You should obviously try both to check if people want to defect, and also make it harder for them to defect.
  • I think a lot of the neglect of AI control can be traced to the “pivotal act” based framings of how to make aligned AI go well. I think these views are mistaken, but I won’t provide a great argument here (quick analogy: if the sum of a bunch of numbers is large, there doesn’t need to be any individual number that is large; similarly, if the consequences of a sequence of actions results in a large change, no individual action needs to be “pivotal”). However, I don’t think things are shaping up for single pivotal acts to be very important, and being able to productively use early AI labor to help with alignment seems like it is going to be an important part of the future going well.
  • Working on AI control is really tractable compared to working on alignment. There is a lot of prior art in people thinking about how to e.g. prevent data from being stolen by insider threats, secure various information against adversaries, generally ensure that national security secrets don’t get leaked, etc. We can set up various plausibly looking scenarios and try to “game them out” under certain plausibly seeming assumptions about how much alignment we’ll be able to achieve. We can make assumptions about AI capabilities and alignment without really getting into the nitty gritty of philosophically confusing topics like “what is deception really?” and “how likely is deception?” and “when will this all go down?”
    • Note that this means control might be easier for the AIs to automate, and easier to do “during crunch time.”
    • It also means that AI control is a bit contiguous with work people already do to protect from adversaries. I think the AI thing qualitatively changes the picture though, so it’s still worth thinking about.
  • If you succeed at AI control, there is a more compelling story you can tell for why you should implement the specific scheme that you thought of. In comparison, a lot of alignment proposals depend on philosophically dubious and confusing assumptions about the nature of cognition/SGD/etc. That is to say, a successful proposal in AI control comes with an argument that might be convincing to established security professionals if they thought about it, but there is likely no such class of professionals capable of lending your proposal external legitimacy in AI alignment.
  • The intelligence explosion might happen with less-fully-AGI AIs, who will also be doing some alignment work on the side. It’s important for them to not escape and do other bad stuff until they’ve solve alignment. We can give ourselves more time to use smart AIs to help with alignment if we have better AI control.
  • There is a bunch of research that is useful for both alignment and control, e.g. model organisms of deception, interpretability techniques, oversight techniques, etc. More people should analyze such research from the perspective of “how can this be helpful even if it fails to produce an aligned AI?”
Load More